| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 2 |
1
|
ffvelcdmda |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 3 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
| 4 |
3
|
ffvelcdmda |
|- ( ( G e. dom S.1 /\ x e. RR ) -> ( G ` x ) e. RR ) |
| 5 |
|
absreim |
|- ( ( ( F ` x ) e. RR /\ ( G ` x ) e. RR ) -> ( abs ` ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) = ( sqrt ` ( ( ( F ` x ) ^ 2 ) + ( ( G ` x ) ^ 2 ) ) ) ) |
| 6 |
2 4 5
|
syl2an |
|- ( ( ( F e. dom S.1 /\ x e. RR ) /\ ( G e. dom S.1 /\ x e. RR ) ) -> ( abs ` ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) = ( sqrt ` ( ( ( F ` x ) ^ 2 ) + ( ( G ` x ) ^ 2 ) ) ) ) |
| 7 |
6
|
anandirs |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( abs ` ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) = ( sqrt ` ( ( ( F ` x ) ^ 2 ) + ( ( G ` x ) ^ 2 ) ) ) ) |
| 8 |
2
|
recnd |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( F ` x ) e. CC ) |
| 9 |
8
|
sqvald |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( ( F ` x ) ^ 2 ) = ( ( F ` x ) x. ( F ` x ) ) ) |
| 10 |
4
|
recnd |
|- ( ( G e. dom S.1 /\ x e. RR ) -> ( G ` x ) e. CC ) |
| 11 |
10
|
sqvald |
|- ( ( G e. dom S.1 /\ x e. RR ) -> ( ( G ` x ) ^ 2 ) = ( ( G ` x ) x. ( G ` x ) ) ) |
| 12 |
9 11
|
oveqan12d |
|- ( ( ( F e. dom S.1 /\ x e. RR ) /\ ( G e. dom S.1 /\ x e. RR ) ) -> ( ( ( F ` x ) ^ 2 ) + ( ( G ` x ) ^ 2 ) ) = ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) |
| 13 |
12
|
anandirs |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( ( ( F ` x ) ^ 2 ) + ( ( G ` x ) ^ 2 ) ) = ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) |
| 14 |
13
|
fveq2d |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( sqrt ` ( ( ( F ` x ) ^ 2 ) + ( ( G ` x ) ^ 2 ) ) ) = ( sqrt ` ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) ) |
| 15 |
7 14
|
eqtrd |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( abs ` ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) = ( sqrt ` ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) ) |
| 16 |
15
|
mpteq2dva |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( x e. RR |-> ( abs ` ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) ) = ( x e. RR |-> ( sqrt ` ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) ) ) |
| 17 |
|
ax-icn |
|- _i e. CC |
| 18 |
|
mulcl |
|- ( ( _i e. CC /\ ( G ` x ) e. CC ) -> ( _i x. ( G ` x ) ) e. CC ) |
| 19 |
17 10 18
|
sylancr |
|- ( ( G e. dom S.1 /\ x e. RR ) -> ( _i x. ( G ` x ) ) e. CC ) |
| 20 |
|
addcl |
|- ( ( ( F ` x ) e. CC /\ ( _i x. ( G ` x ) ) e. CC ) -> ( ( F ` x ) + ( _i x. ( G ` x ) ) ) e. CC ) |
| 21 |
8 19 20
|
syl2an |
|- ( ( ( F e. dom S.1 /\ x e. RR ) /\ ( G e. dom S.1 /\ x e. RR ) ) -> ( ( F ` x ) + ( _i x. ( G ` x ) ) ) e. CC ) |
| 22 |
21
|
anandirs |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( ( F ` x ) + ( _i x. ( G ` x ) ) ) e. CC ) |
| 23 |
|
reex |
|- RR e. _V |
| 24 |
23
|
a1i |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> RR e. _V ) |
| 25 |
2
|
adantlr |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 26 |
|
ovexd |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( _i x. ( G ` x ) ) e. _V ) |
| 27 |
1
|
feqmptd |
|- ( F e. dom S.1 -> F = ( x e. RR |-> ( F ` x ) ) ) |
| 28 |
27
|
adantr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F = ( x e. RR |-> ( F ` x ) ) ) |
| 29 |
23
|
a1i |
|- ( G e. dom S.1 -> RR e. _V ) |
| 30 |
17
|
a1i |
|- ( ( G e. dom S.1 /\ x e. RR ) -> _i e. CC ) |
| 31 |
|
fconstmpt |
|- ( RR X. { _i } ) = ( x e. RR |-> _i ) |
| 32 |
31
|
a1i |
|- ( G e. dom S.1 -> ( RR X. { _i } ) = ( x e. RR |-> _i ) ) |
| 33 |
3
|
feqmptd |
|- ( G e. dom S.1 -> G = ( x e. RR |-> ( G ` x ) ) ) |
| 34 |
29 30 4 32 33
|
offval2 |
|- ( G e. dom S.1 -> ( ( RR X. { _i } ) oF x. G ) = ( x e. RR |-> ( _i x. ( G ` x ) ) ) ) |
| 35 |
34
|
adantl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( RR X. { _i } ) oF x. G ) = ( x e. RR |-> ( _i x. ( G ` x ) ) ) ) |
| 36 |
24 25 26 28 35
|
offval2 |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { _i } ) oF x. G ) ) = ( x e. RR |-> ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) ) |
| 37 |
|
absf |
|- abs : CC --> RR |
| 38 |
37
|
a1i |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> abs : CC --> RR ) |
| 39 |
38
|
feqmptd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> abs = ( y e. CC |-> ( abs ` y ) ) ) |
| 40 |
|
fveq2 |
|- ( y = ( ( F ` x ) + ( _i x. ( G ` x ) ) ) -> ( abs ` y ) = ( abs ` ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) ) |
| 41 |
22 36 39 40
|
fmptco |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( abs o. ( F oF + ( ( RR X. { _i } ) oF x. G ) ) ) = ( x e. RR |-> ( abs ` ( ( F ` x ) + ( _i x. ( G ` x ) ) ) ) ) ) |
| 42 |
8 8
|
mulcld |
|- ( ( F e. dom S.1 /\ x e. RR ) -> ( ( F ` x ) x. ( F ` x ) ) e. CC ) |
| 43 |
10 10
|
mulcld |
|- ( ( G e. dom S.1 /\ x e. RR ) -> ( ( G ` x ) x. ( G ` x ) ) e. CC ) |
| 44 |
|
addcl |
|- ( ( ( ( F ` x ) x. ( F ` x ) ) e. CC /\ ( ( G ` x ) x. ( G ` x ) ) e. CC ) -> ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) e. CC ) |
| 45 |
42 43 44
|
syl2an |
|- ( ( ( F e. dom S.1 /\ x e. RR ) /\ ( G e. dom S.1 /\ x e. RR ) ) -> ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) e. CC ) |
| 46 |
45
|
anandirs |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) e. CC ) |
| 47 |
42
|
adantlr |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( ( F ` x ) x. ( F ` x ) ) e. CC ) |
| 48 |
43
|
adantll |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( ( G ` x ) x. ( G ` x ) ) e. CC ) |
| 49 |
23
|
a1i |
|- ( F e. dom S.1 -> RR e. _V ) |
| 50 |
49 2 2 27 27
|
offval2 |
|- ( F e. dom S.1 -> ( F oF x. F ) = ( x e. RR |-> ( ( F ` x ) x. ( F ` x ) ) ) ) |
| 51 |
50
|
adantr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF x. F ) = ( x e. RR |-> ( ( F ` x ) x. ( F ` x ) ) ) ) |
| 52 |
29 4 4 33 33
|
offval2 |
|- ( G e. dom S.1 -> ( G oF x. G ) = ( x e. RR |-> ( ( G ` x ) x. ( G ` x ) ) ) ) |
| 53 |
52
|
adantl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( G oF x. G ) = ( x e. RR |-> ( ( G ` x ) x. ( G ` x ) ) ) ) |
| 54 |
24 47 48 51 53
|
offval2 |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( F oF x. F ) oF + ( G oF x. G ) ) = ( x e. RR |-> ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) ) |
| 55 |
|
sqrtf |
|- sqrt : CC --> CC |
| 56 |
55
|
a1i |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> sqrt : CC --> CC ) |
| 57 |
56
|
feqmptd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> sqrt = ( y e. CC |-> ( sqrt ` y ) ) ) |
| 58 |
|
fveq2 |
|- ( y = ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) -> ( sqrt ` y ) = ( sqrt ` ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) ) |
| 59 |
46 54 57 58
|
fmptco |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) = ( x e. RR |-> ( sqrt ` ( ( ( F ` x ) x. ( F ` x ) ) + ( ( G ` x ) x. ( G ` x ) ) ) ) ) ) |
| 60 |
16 41 59
|
3eqtr4d |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( abs o. ( F oF + ( ( RR X. { _i } ) oF x. G ) ) ) = ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) ) |
| 61 |
|
elrege0 |
|- ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) |
| 62 |
|
resqrtcl |
|- ( ( x e. RR /\ 0 <_ x ) -> ( sqrt ` x ) e. RR ) |
| 63 |
61 62
|
sylbi |
|- ( x e. ( 0 [,) +oo ) -> ( sqrt ` x ) e. RR ) |
| 64 |
63
|
adantl |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. ( 0 [,) +oo ) ) -> ( sqrt ` x ) e. RR ) |
| 65 |
|
id |
|- ( sqrt : CC --> CC -> sqrt : CC --> CC ) |
| 66 |
65
|
feqmptd |
|- ( sqrt : CC --> CC -> sqrt = ( x e. CC |-> ( sqrt ` x ) ) ) |
| 67 |
55 66
|
ax-mp |
|- sqrt = ( x e. CC |-> ( sqrt ` x ) ) |
| 68 |
67
|
reseq1i |
|- ( sqrt |` ( 0 [,) +oo ) ) = ( ( x e. CC |-> ( sqrt ` x ) ) |` ( 0 [,) +oo ) ) |
| 69 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 70 |
|
ax-resscn |
|- RR C_ CC |
| 71 |
69 70
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 72 |
|
resmpt |
|- ( ( 0 [,) +oo ) C_ CC -> ( ( x e. CC |-> ( sqrt ` x ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) ) |
| 73 |
71 72
|
ax-mp |
|- ( ( x e. CC |-> ( sqrt ` x ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) |
| 74 |
68 73
|
eqtri |
|- ( sqrt |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> ( sqrt ` x ) ) |
| 75 |
64 74
|
fmptd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( sqrt |` ( 0 [,) +oo ) ) : ( 0 [,) +oo ) --> RR ) |
| 76 |
|
ge0addcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
| 77 |
76
|
adantl |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
| 78 |
|
oveq12 |
|- ( ( z = F /\ z = F ) -> ( z oF x. z ) = ( F oF x. F ) ) |
| 79 |
78
|
anidms |
|- ( z = F -> ( z oF x. z ) = ( F oF x. F ) ) |
| 80 |
79
|
feq1d |
|- ( z = F -> ( ( z oF x. z ) : RR --> ( 0 [,) +oo ) <-> ( F oF x. F ) : RR --> ( 0 [,) +oo ) ) ) |
| 81 |
|
i1ff |
|- ( z e. dom S.1 -> z : RR --> RR ) |
| 82 |
81
|
ffvelcdmda |
|- ( ( z e. dom S.1 /\ x e. RR ) -> ( z ` x ) e. RR ) |
| 83 |
82 82
|
remulcld |
|- ( ( z e. dom S.1 /\ x e. RR ) -> ( ( z ` x ) x. ( z ` x ) ) e. RR ) |
| 84 |
82
|
msqge0d |
|- ( ( z e. dom S.1 /\ x e. RR ) -> 0 <_ ( ( z ` x ) x. ( z ` x ) ) ) |
| 85 |
|
elrege0 |
|- ( ( ( z ` x ) x. ( z ` x ) ) e. ( 0 [,) +oo ) <-> ( ( ( z ` x ) x. ( z ` x ) ) e. RR /\ 0 <_ ( ( z ` x ) x. ( z ` x ) ) ) ) |
| 86 |
83 84 85
|
sylanbrc |
|- ( ( z e. dom S.1 /\ x e. RR ) -> ( ( z ` x ) x. ( z ` x ) ) e. ( 0 [,) +oo ) ) |
| 87 |
86
|
fmpttd |
|- ( z e. dom S.1 -> ( x e. RR |-> ( ( z ` x ) x. ( z ` x ) ) ) : RR --> ( 0 [,) +oo ) ) |
| 88 |
23
|
a1i |
|- ( z e. dom S.1 -> RR e. _V ) |
| 89 |
81
|
feqmptd |
|- ( z e. dom S.1 -> z = ( x e. RR |-> ( z ` x ) ) ) |
| 90 |
88 82 82 89 89
|
offval2 |
|- ( z e. dom S.1 -> ( z oF x. z ) = ( x e. RR |-> ( ( z ` x ) x. ( z ` x ) ) ) ) |
| 91 |
90
|
feq1d |
|- ( z e. dom S.1 -> ( ( z oF x. z ) : RR --> ( 0 [,) +oo ) <-> ( x e. RR |-> ( ( z ` x ) x. ( z ` x ) ) ) : RR --> ( 0 [,) +oo ) ) ) |
| 92 |
87 91
|
mpbird |
|- ( z e. dom S.1 -> ( z oF x. z ) : RR --> ( 0 [,) +oo ) ) |
| 93 |
80 92
|
vtoclga |
|- ( F e. dom S.1 -> ( F oF x. F ) : RR --> ( 0 [,) +oo ) ) |
| 94 |
93
|
adantr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF x. F ) : RR --> ( 0 [,) +oo ) ) |
| 95 |
|
oveq12 |
|- ( ( z = G /\ z = G ) -> ( z oF x. z ) = ( G oF x. G ) ) |
| 96 |
95
|
anidms |
|- ( z = G -> ( z oF x. z ) = ( G oF x. G ) ) |
| 97 |
96
|
feq1d |
|- ( z = G -> ( ( z oF x. z ) : RR --> ( 0 [,) +oo ) <-> ( G oF x. G ) : RR --> ( 0 [,) +oo ) ) ) |
| 98 |
97 92
|
vtoclga |
|- ( G e. dom S.1 -> ( G oF x. G ) : RR --> ( 0 [,) +oo ) ) |
| 99 |
98
|
adantl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( G oF x. G ) : RR --> ( 0 [,) +oo ) ) |
| 100 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 101 |
77 94 99 24 24 100
|
off |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( F oF x. F ) oF + ( G oF x. G ) ) : RR --> ( 0 [,) +oo ) ) |
| 102 |
|
fco2 |
|- ( ( ( sqrt |` ( 0 [,) +oo ) ) : ( 0 [,) +oo ) --> RR /\ ( ( F oF x. F ) oF + ( G oF x. G ) ) : RR --> ( 0 [,) +oo ) ) -> ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) : RR --> RR ) |
| 103 |
75 101 102
|
syl2anc |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) : RR --> RR ) |
| 104 |
|
rnco |
|- ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) = ran ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) |
| 105 |
|
ffn |
|- ( sqrt : CC --> CC -> sqrt Fn CC ) |
| 106 |
55 105
|
ax-mp |
|- sqrt Fn CC |
| 107 |
|
readdcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
| 108 |
107
|
adantl |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
| 109 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
| 110 |
109
|
adantl |
|- ( ( F e. dom S.1 /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 111 |
110 1 1 49 49 100
|
off |
|- ( F e. dom S.1 -> ( F oF x. F ) : RR --> RR ) |
| 112 |
111
|
adantr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF x. F ) : RR --> RR ) |
| 113 |
109
|
adantl |
|- ( ( G e. dom S.1 /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 114 |
113 3 3 29 29 100
|
off |
|- ( G e. dom S.1 -> ( G oF x. G ) : RR --> RR ) |
| 115 |
114
|
adantl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( G oF x. G ) : RR --> RR ) |
| 116 |
108 112 115 24 24 100
|
off |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( F oF x. F ) oF + ( G oF x. G ) ) : RR --> RR ) |
| 117 |
116
|
frnd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ran ( ( F oF x. F ) oF + ( G oF x. G ) ) C_ RR ) |
| 118 |
117 70
|
sstrdi |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ran ( ( F oF x. F ) oF + ( G oF x. G ) ) C_ CC ) |
| 119 |
|
fnssres |
|- ( ( sqrt Fn CC /\ ran ( ( F oF x. F ) oF + ( G oF x. G ) ) C_ CC ) -> ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) Fn ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) |
| 120 |
106 118 119
|
sylancr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) Fn ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) |
| 121 |
|
id |
|- ( F e. dom S.1 -> F e. dom S.1 ) |
| 122 |
121 121
|
i1fmul |
|- ( F e. dom S.1 -> ( F oF x. F ) e. dom S.1 ) |
| 123 |
122
|
adantr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF x. F ) e. dom S.1 ) |
| 124 |
|
id |
|- ( G e. dom S.1 -> G e. dom S.1 ) |
| 125 |
124 124
|
i1fmul |
|- ( G e. dom S.1 -> ( G oF x. G ) e. dom S.1 ) |
| 126 |
125
|
adantl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( G oF x. G ) e. dom S.1 ) |
| 127 |
123 126
|
i1fadd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( F oF x. F ) oF + ( G oF x. G ) ) e. dom S.1 ) |
| 128 |
|
i1frn |
|- ( ( ( F oF x. F ) oF + ( G oF x. G ) ) e. dom S.1 -> ran ( ( F oF x. F ) oF + ( G oF x. G ) ) e. Fin ) |
| 129 |
127 128
|
syl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ran ( ( F oF x. F ) oF + ( G oF x. G ) ) e. Fin ) |
| 130 |
|
fnfi |
|- ( ( ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) Fn ran ( ( F oF x. F ) oF + ( G oF x. G ) ) /\ ran ( ( F oF x. F ) oF + ( G oF x. G ) ) e. Fin ) -> ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) e. Fin ) |
| 131 |
120 129 130
|
syl2anc |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) e. Fin ) |
| 132 |
|
rnfi |
|- ( ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) e. Fin -> ran ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) e. Fin ) |
| 133 |
131 132
|
syl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ran ( sqrt |` ran ( ( F oF x. F ) oF + ( G oF x. G ) ) ) e. Fin ) |
| 134 |
104 133
|
eqeltrid |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) e. Fin ) |
| 135 |
|
cnvco |
|- `' ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) = ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) o. `' sqrt ) |
| 136 |
135
|
imaeq1i |
|- ( `' ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) " { x } ) = ( ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) o. `' sqrt ) " { x } ) |
| 137 |
|
imaco |
|- ( ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) o. `' sqrt ) " { x } ) = ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) " ( `' sqrt " { x } ) ) |
| 138 |
136 137
|
eqtri |
|- ( `' ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) " { x } ) = ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) " ( `' sqrt " { x } ) ) |
| 139 |
|
i1fima |
|- ( ( ( F oF x. F ) oF + ( G oF x. G ) ) e. dom S.1 -> ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) " ( `' sqrt " { x } ) ) e. dom vol ) |
| 140 |
127 139
|
syl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) " ( `' sqrt " { x } ) ) e. dom vol ) |
| 141 |
138 140
|
eqeltrid |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( `' ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) " { x } ) e. dom vol ) |
| 142 |
141
|
adantr |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. ( ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) \ { 0 } ) ) -> ( `' ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) " { x } ) e. dom vol ) |
| 143 |
138
|
fveq2i |
|- ( vol ` ( `' ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) " { x } ) ) = ( vol ` ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) " ( `' sqrt " { x } ) ) ) |
| 144 |
|
eldifsni |
|- ( x e. ( ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) \ { 0 } ) -> x =/= 0 ) |
| 145 |
|
c0ex |
|- 0 e. _V |
| 146 |
145
|
elsn |
|- ( 0 e. { x } <-> 0 = x ) |
| 147 |
|
eqcom |
|- ( 0 = x <-> x = 0 ) |
| 148 |
146 147
|
bitri |
|- ( 0 e. { x } <-> x = 0 ) |
| 149 |
148
|
necon3bbii |
|- ( -. 0 e. { x } <-> x =/= 0 ) |
| 150 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
| 151 |
150
|
eleq1i |
|- ( ( sqrt ` 0 ) e. { x } <-> 0 e. { x } ) |
| 152 |
149 151
|
xchnxbir |
|- ( -. ( sqrt ` 0 ) e. { x } <-> x =/= 0 ) |
| 153 |
144 152
|
sylibr |
|- ( x e. ( ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) \ { 0 } ) -> -. ( sqrt ` 0 ) e. { x } ) |
| 154 |
153
|
olcd |
|- ( x e. ( ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) \ { 0 } ) -> ( -. 0 e. CC \/ -. ( sqrt ` 0 ) e. { x } ) ) |
| 155 |
|
ianor |
|- ( -. ( 0 e. CC /\ ( sqrt ` 0 ) e. { x } ) <-> ( -. 0 e. CC \/ -. ( sqrt ` 0 ) e. { x } ) ) |
| 156 |
|
elpreima |
|- ( sqrt Fn CC -> ( 0 e. ( `' sqrt " { x } ) <-> ( 0 e. CC /\ ( sqrt ` 0 ) e. { x } ) ) ) |
| 157 |
55 105 156
|
mp2b |
|- ( 0 e. ( `' sqrt " { x } ) <-> ( 0 e. CC /\ ( sqrt ` 0 ) e. { x } ) ) |
| 158 |
155 157
|
xchnxbir |
|- ( -. 0 e. ( `' sqrt " { x } ) <-> ( -. 0 e. CC \/ -. ( sqrt ` 0 ) e. { x } ) ) |
| 159 |
154 158
|
sylibr |
|- ( x e. ( ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) \ { 0 } ) -> -. 0 e. ( `' sqrt " { x } ) ) |
| 160 |
|
i1fima2 |
|- ( ( ( ( F oF x. F ) oF + ( G oF x. G ) ) e. dom S.1 /\ -. 0 e. ( `' sqrt " { x } ) ) -> ( vol ` ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) " ( `' sqrt " { x } ) ) ) e. RR ) |
| 161 |
127 159 160
|
syl2an |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. ( ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) \ { 0 } ) ) -> ( vol ` ( `' ( ( F oF x. F ) oF + ( G oF x. G ) ) " ( `' sqrt " { x } ) ) ) e. RR ) |
| 162 |
143 161
|
eqeltrid |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. ( ran ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) \ { 0 } ) ) -> ( vol ` ( `' ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) " { x } ) ) e. RR ) |
| 163 |
103 134 142 162
|
i1fd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( sqrt o. ( ( F oF x. F ) oF + ( G oF x. G ) ) ) e. dom S.1 ) |
| 164 |
60 163
|
eqeltrd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( abs o. ( F oF + ( ( RR X. { _i } ) oF x. G ) ) ) e. dom S.1 ) |