Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
|- ( ( G : RR --> RR /\ t e. RR ) -> ( G ` t ) e. RR ) |
2 |
1
|
recnd |
|- ( ( G : RR --> RR /\ t e. RR ) -> ( G ` t ) e. CC ) |
3 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
4 |
3
|
ffvelrnda |
|- ( ( F e. dom S.1 /\ t e. RR ) -> ( F ` t ) e. RR ) |
5 |
4
|
recnd |
|- ( ( F e. dom S.1 /\ t e. RR ) -> ( F ` t ) e. CC ) |
6 |
|
subcl |
|- ( ( ( G ` t ) e. CC /\ ( F ` t ) e. CC ) -> ( ( G ` t ) - ( F ` t ) ) e. CC ) |
7 |
2 5 6
|
syl2anr |
|- ( ( ( F e. dom S.1 /\ t e. RR ) /\ ( G : RR --> RR /\ t e. RR ) ) -> ( ( G ` t ) - ( F ` t ) ) e. CC ) |
8 |
7
|
anandirs |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( ( G ` t ) - ( F ` t ) ) e. CC ) |
9 |
8
|
abscld |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) e. RR ) |
10 |
9
|
rexrd |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) e. RR* ) |
11 |
8
|
absge0d |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> 0 <_ ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) |
12 |
|
elxrge0 |
|- ( ( abs ` ( ( G ` t ) - ( F ` t ) ) ) e. ( 0 [,] +oo ) <-> ( ( abs ` ( ( G ` t ) - ( F ` t ) ) ) e. RR* /\ 0 <_ ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) ) |
13 |
10 11 12
|
sylanbrc |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) e. ( 0 [,] +oo ) ) |
14 |
13
|
fmpttd |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) : RR --> ( 0 [,] +oo ) ) |
15 |
14
|
3adant2 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) : RR --> ( 0 [,] +oo ) ) |
16 |
|
reex |
|- RR e. _V |
17 |
16
|
a1i |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> RR e. _V ) |
18 |
|
fvexd |
|- ( ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( G ` t ) ) e. _V ) |
19 |
|
fvexd |
|- ( ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( F ` t ) ) e. _V ) |
20 |
|
eqidd |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( G ` t ) ) ) = ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) |
21 |
|
eqidd |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( F ` t ) ) ) = ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) |
22 |
17 18 19 20 21
|
offval2 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( ( t e. RR |-> ( abs ` ( G ` t ) ) ) oF + ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) = ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) |
23 |
22
|
fveq2d |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( ( t e. RR |-> ( abs ` ( G ` t ) ) ) oF + ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) ) = ( S.2 ` ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) ) |
24 |
|
id |
|- ( G : RR --> RR -> G : RR --> RR ) |
25 |
24
|
feqmptd |
|- ( G : RR --> RR -> G = ( t e. RR |-> ( G ` t ) ) ) |
26 |
|
absf |
|- abs : CC --> RR |
27 |
26
|
a1i |
|- ( G : RR --> RR -> abs : CC --> RR ) |
28 |
27
|
feqmptd |
|- ( G : RR --> RR -> abs = ( x e. CC |-> ( abs ` x ) ) ) |
29 |
|
fveq2 |
|- ( x = ( G ` t ) -> ( abs ` x ) = ( abs ` ( G ` t ) ) ) |
30 |
2 25 28 29
|
fmptco |
|- ( G : RR --> RR -> ( abs o. G ) = ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) |
31 |
30
|
adantl |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( abs o. G ) = ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) |
32 |
|
iblmbf |
|- ( G e. L^1 -> G e. MblFn ) |
33 |
|
ftc1anclem1 |
|- ( ( G : RR --> RR /\ G e. MblFn ) -> ( abs o. G ) e. MblFn ) |
34 |
32 33
|
sylan2 |
|- ( ( G : RR --> RR /\ G e. L^1 ) -> ( abs o. G ) e. MblFn ) |
35 |
34
|
ancoms |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( abs o. G ) e. MblFn ) |
36 |
31 35
|
eqeltrrd |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( G ` t ) ) ) e. MblFn ) |
37 |
36
|
3adant1 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( G ` t ) ) ) e. MblFn ) |
38 |
2
|
abscld |
|- ( ( G : RR --> RR /\ t e. RR ) -> ( abs ` ( G ` t ) ) e. RR ) |
39 |
2
|
absge0d |
|- ( ( G : RR --> RR /\ t e. RR ) -> 0 <_ ( abs ` ( G ` t ) ) ) |
40 |
|
elrege0 |
|- ( ( abs ` ( G ` t ) ) e. ( 0 [,) +oo ) <-> ( ( abs ` ( G ` t ) ) e. RR /\ 0 <_ ( abs ` ( G ` t ) ) ) ) |
41 |
38 39 40
|
sylanbrc |
|- ( ( G : RR --> RR /\ t e. RR ) -> ( abs ` ( G ` t ) ) e. ( 0 [,) +oo ) ) |
42 |
41
|
fmpttd |
|- ( G : RR --> RR -> ( t e. RR |-> ( abs ` ( G ` t ) ) ) : RR --> ( 0 [,) +oo ) ) |
43 |
42
|
3ad2ant3 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( G ` t ) ) ) : RR --> ( 0 [,) +oo ) ) |
44 |
|
iftrue |
|- ( t e. RR -> if ( t e. RR , ( abs ` ( G ` t ) ) , 0 ) = ( abs ` ( G ` t ) ) ) |
45 |
44
|
mpteq2ia |
|- ( t e. RR |-> if ( t e. RR , ( abs ` ( G ` t ) ) , 0 ) ) = ( t e. RR |-> ( abs ` ( G ` t ) ) ) |
46 |
45
|
fveq2i |
|- ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( G ` t ) ) , 0 ) ) ) = ( S.2 ` ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) |
47 |
1
|
adantll |
|- ( ( ( G e. L^1 /\ G : RR --> RR ) /\ t e. RR ) -> ( G ` t ) e. RR ) |
48 |
|
simpr |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> G : RR --> RR ) |
49 |
48
|
feqmptd |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> G = ( t e. RR |-> ( G ` t ) ) ) |
50 |
|
simpl |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> G e. L^1 ) |
51 |
49 50
|
eqeltrrd |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( G ` t ) ) e. L^1 ) |
52 |
47 51 36
|
iblabsnc |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( G ` t ) ) ) e. L^1 ) |
53 |
38
|
adantll |
|- ( ( ( G e. L^1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( G ` t ) ) e. RR ) |
54 |
39
|
adantll |
|- ( ( ( G e. L^1 /\ G : RR --> RR ) /\ t e. RR ) -> 0 <_ ( abs ` ( G ` t ) ) ) |
55 |
53 54
|
iblpos |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( ( t e. RR |-> ( abs ` ( G ` t ) ) ) e. L^1 <-> ( ( t e. RR |-> ( abs ` ( G ` t ) ) ) e. MblFn /\ ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( G ` t ) ) , 0 ) ) ) e. RR ) ) ) |
56 |
52 55
|
mpbid |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( ( t e. RR |-> ( abs ` ( G ` t ) ) ) e. MblFn /\ ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( G ` t ) ) , 0 ) ) ) e. RR ) ) |
57 |
56
|
simprd |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( G ` t ) ) , 0 ) ) ) e. RR ) |
58 |
46 57
|
eqeltrrid |
|- ( ( G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) e. RR ) |
59 |
58
|
3adant1 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) e. RR ) |
60 |
5
|
abscld |
|- ( ( F e. dom S.1 /\ t e. RR ) -> ( abs ` ( F ` t ) ) e. RR ) |
61 |
5
|
absge0d |
|- ( ( F e. dom S.1 /\ t e. RR ) -> 0 <_ ( abs ` ( F ` t ) ) ) |
62 |
|
elrege0 |
|- ( ( abs ` ( F ` t ) ) e. ( 0 [,) +oo ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ 0 <_ ( abs ` ( F ` t ) ) ) ) |
63 |
60 61 62
|
sylanbrc |
|- ( ( F e. dom S.1 /\ t e. RR ) -> ( abs ` ( F ` t ) ) e. ( 0 [,) +oo ) ) |
64 |
63
|
fmpttd |
|- ( F e. dom S.1 -> ( t e. RR |-> ( abs ` ( F ` t ) ) ) : RR --> ( 0 [,) +oo ) ) |
65 |
64
|
3ad2ant1 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( F ` t ) ) ) : RR --> ( 0 [,) +oo ) ) |
66 |
|
iftrue |
|- ( t e. RR -> if ( t e. RR , ( abs ` ( F ` t ) ) , 0 ) = ( abs ` ( F ` t ) ) ) |
67 |
66
|
mpteq2ia |
|- ( t e. RR |-> if ( t e. RR , ( abs ` ( F ` t ) ) , 0 ) ) = ( t e. RR |-> ( abs ` ( F ` t ) ) ) |
68 |
67
|
fveq2i |
|- ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( F ` t ) ) , 0 ) ) ) = ( S.2 ` ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) |
69 |
3
|
feqmptd |
|- ( F e. dom S.1 -> F = ( t e. RR |-> ( F ` t ) ) ) |
70 |
|
i1fibl |
|- ( F e. dom S.1 -> F e. L^1 ) |
71 |
69 70
|
eqeltrrd |
|- ( F e. dom S.1 -> ( t e. RR |-> ( F ` t ) ) e. L^1 ) |
72 |
26
|
a1i |
|- ( F e. dom S.1 -> abs : CC --> RR ) |
73 |
72
|
feqmptd |
|- ( F e. dom S.1 -> abs = ( x e. CC |-> ( abs ` x ) ) ) |
74 |
|
fveq2 |
|- ( x = ( F ` t ) -> ( abs ` x ) = ( abs ` ( F ` t ) ) ) |
75 |
5 69 73 74
|
fmptco |
|- ( F e. dom S.1 -> ( abs o. F ) = ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) |
76 |
|
i1fmbf |
|- ( F e. dom S.1 -> F e. MblFn ) |
77 |
|
ftc1anclem1 |
|- ( ( F : RR --> RR /\ F e. MblFn ) -> ( abs o. F ) e. MblFn ) |
78 |
3 76 77
|
syl2anc |
|- ( F e. dom S.1 -> ( abs o. F ) e. MblFn ) |
79 |
75 78
|
eqeltrrd |
|- ( F e. dom S.1 -> ( t e. RR |-> ( abs ` ( F ` t ) ) ) e. MblFn ) |
80 |
4 71 79
|
iblabsnc |
|- ( F e. dom S.1 -> ( t e. RR |-> ( abs ` ( F ` t ) ) ) e. L^1 ) |
81 |
60 61
|
iblpos |
|- ( F e. dom S.1 -> ( ( t e. RR |-> ( abs ` ( F ` t ) ) ) e. L^1 <-> ( ( t e. RR |-> ( abs ` ( F ` t ) ) ) e. MblFn /\ ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR ) ) ) |
82 |
80 81
|
mpbid |
|- ( F e. dom S.1 -> ( ( t e. RR |-> ( abs ` ( F ` t ) ) ) e. MblFn /\ ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR ) ) |
83 |
82
|
simprd |
|- ( F e. dom S.1 -> ( S.2 ` ( t e. RR |-> if ( t e. RR , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR ) |
84 |
68 83
|
eqeltrrid |
|- ( F e. dom S.1 -> ( S.2 ` ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) e. RR ) |
85 |
84
|
3ad2ant1 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) e. RR ) |
86 |
37 43 59 65 85
|
itg2addnc |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( ( t e. RR |-> ( abs ` ( G ` t ) ) ) oF + ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) ) = ( ( S.2 ` ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) + ( S.2 ` ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) ) ) |
87 |
23 86
|
eqtr3d |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) = ( ( S.2 ` ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) + ( S.2 ` ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) ) ) |
88 |
59 85
|
readdcld |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( G ` t ) ) ) ) + ( S.2 ` ( t e. RR |-> ( abs ` ( F ` t ) ) ) ) ) e. RR ) |
89 |
87 88
|
eqeltrd |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) e. RR ) |
90 |
|
readdcl |
|- ( ( ( abs ` ( G ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) e. RR ) -> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) e. RR ) |
91 |
38 60 90
|
syl2anr |
|- ( ( ( F e. dom S.1 /\ t e. RR ) /\ ( G : RR --> RR /\ t e. RR ) ) -> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) e. RR ) |
92 |
91
|
anandirs |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) e. RR ) |
93 |
92
|
rexrd |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) e. RR* ) |
94 |
38
|
adantll |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( G ` t ) ) e. RR ) |
95 |
60
|
adantlr |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( F ` t ) ) e. RR ) |
96 |
39
|
adantll |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> 0 <_ ( abs ` ( G ` t ) ) ) |
97 |
61
|
adantlr |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> 0 <_ ( abs ` ( F ` t ) ) ) |
98 |
94 95 96 97
|
addge0d |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> 0 <_ ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) |
99 |
|
elxrge0 |
|- ( ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) e. ( 0 [,] +oo ) <-> ( ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) e. RR* /\ 0 <_ ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) |
100 |
93 98 99
|
sylanbrc |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) e. ( 0 [,] +oo ) ) |
101 |
100
|
fmpttd |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) : RR --> ( 0 [,] +oo ) ) |
102 |
101
|
3adant2 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) : RR --> ( 0 [,] +oo ) ) |
103 |
|
abs2dif2 |
|- ( ( ( G ` t ) e. CC /\ ( F ` t ) e. CC ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) <_ ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) |
104 |
2 5 103
|
syl2anr |
|- ( ( ( F e. dom S.1 /\ t e. RR ) /\ ( G : RR --> RR /\ t e. RR ) ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) <_ ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) |
105 |
104
|
anandirs |
|- ( ( ( F e. dom S.1 /\ G : RR --> RR ) /\ t e. RR ) -> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) <_ ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) |
106 |
105
|
ralrimiva |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> A. t e. RR ( abs ` ( ( G ` t ) - ( F ` t ) ) ) <_ ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) |
107 |
16
|
a1i |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> RR e. _V ) |
108 |
|
eqidd |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) = ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) ) |
109 |
|
eqidd |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) = ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) |
110 |
107 9 92 108 109
|
ofrfval2 |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> ( ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) oR <_ ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) <-> A. t e. RR ( abs ` ( ( G ` t ) - ( F ` t ) ) ) <_ ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) |
111 |
106 110
|
mpbird |
|- ( ( F e. dom S.1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) oR <_ ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) |
112 |
111
|
3adant2 |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) oR <_ ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) |
113 |
|
itg2le |
|- ( ( ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) oR <_ ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) ) <_ ( S.2 ` ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) ) |
114 |
15 102 112 113
|
syl3anc |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) ) <_ ( S.2 ` ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) ) |
115 |
|
itg2lecl |
|- ( ( ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) : RR --> ( 0 [,] +oo ) /\ ( S.2 ` ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) e. RR /\ ( S.2 ` ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) ) <_ ( S.2 ` ( t e. RR |-> ( ( abs ` ( G ` t ) ) + ( abs ` ( F ` t ) ) ) ) ) ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) ) e. RR ) |
116 |
15 89 114 115
|
syl3anc |
|- ( ( F e. dom S.1 /\ G e. L^1 /\ G : RR --> RR ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( ( G ` t ) - ( F ` t ) ) ) ) ) e. RR ) |