| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1anc.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
| 2 |
|
ftc1anc.a |
|- ( ph -> A e. RR ) |
| 3 |
|
ftc1anc.b |
|- ( ph -> B e. RR ) |
| 4 |
|
ftc1anc.le |
|- ( ph -> A <_ B ) |
| 5 |
|
ftc1anc.s |
|- ( ph -> ( A (,) B ) C_ D ) |
| 6 |
|
ftc1anc.d |
|- ( ph -> D C_ RR ) |
| 7 |
|
ftc1anc.i |
|- ( ph -> F e. L^1 ) |
| 8 |
|
ftc1anc.f |
|- ( ph -> F : D --> CC ) |
| 9 |
|
ftc1anc.t |
|- ( ph -> A. s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ( abs ` S. s ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 10 |
1 2 3 4 5 6 7 8
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
| 11 |
|
rphalfcl |
|- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
| 12 |
1 2 3 4 5 6 7 8
|
ftc1anclem6 |
|- ( ( ph /\ ( y / 2 ) e. RR+ ) -> E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) |
| 13 |
11 12
|
sylan2 |
|- ( ( ph /\ y e. RR+ ) -> E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) |
| 14 |
13
|
adantrl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) |
| 15 |
11
|
ad2antll |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> ( y / 2 ) e. RR+ ) |
| 16 |
|
2rp |
|- 2 e. RR+ |
| 17 |
|
i1ff |
|- ( f e. dom S.1 -> f : RR --> RR ) |
| 18 |
17
|
frnd |
|- ( f e. dom S.1 -> ran f C_ RR ) |
| 19 |
18
|
adantr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ran f C_ RR ) |
| 20 |
|
i1ff |
|- ( g e. dom S.1 -> g : RR --> RR ) |
| 21 |
20
|
frnd |
|- ( g e. dom S.1 -> ran g C_ RR ) |
| 22 |
21
|
adantl |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ran g C_ RR ) |
| 23 |
19 22
|
unssd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) C_ RR ) |
| 24 |
|
ax-resscn |
|- RR C_ CC |
| 25 |
23 24
|
sstrdi |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) C_ CC ) |
| 26 |
|
i1f0rn |
|- ( f e. dom S.1 -> 0 e. ran f ) |
| 27 |
|
elun1 |
|- ( 0 e. ran f -> 0 e. ( ran f u. ran g ) ) |
| 28 |
26 27
|
syl |
|- ( f e. dom S.1 -> 0 e. ( ran f u. ran g ) ) |
| 29 |
28
|
adantr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0 e. ( ran f u. ran g ) ) |
| 30 |
|
absf |
|- abs : CC --> RR |
| 31 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
| 32 |
30 31
|
ax-mp |
|- abs Fn CC |
| 33 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ 0 e. ( ran f u. ran g ) ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
| 34 |
32 33
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ 0 e. ( ran f u. ran g ) ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
| 35 |
25 29 34
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
| 36 |
35
|
ne0d |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) =/= (/) ) |
| 37 |
|
imassrn |
|- ( abs " ( ran f u. ran g ) ) C_ ran abs |
| 38 |
|
frn |
|- ( abs : CC --> RR -> ran abs C_ RR ) |
| 39 |
30 38
|
ax-mp |
|- ran abs C_ RR |
| 40 |
37 39
|
sstri |
|- ( abs " ( ran f u. ran g ) ) C_ RR |
| 41 |
|
ffun |
|- ( abs : CC --> RR -> Fun abs ) |
| 42 |
30 41
|
ax-mp |
|- Fun abs |
| 43 |
|
i1frn |
|- ( f e. dom S.1 -> ran f e. Fin ) |
| 44 |
|
i1frn |
|- ( g e. dom S.1 -> ran g e. Fin ) |
| 45 |
|
unfi |
|- ( ( ran f e. Fin /\ ran g e. Fin ) -> ( ran f u. ran g ) e. Fin ) |
| 46 |
43 44 45
|
syl2an |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) e. Fin ) |
| 47 |
|
imafi |
|- ( ( Fun abs /\ ( ran f u. ran g ) e. Fin ) -> ( abs " ( ran f u. ran g ) ) e. Fin ) |
| 48 |
42 46 47
|
sylancr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) e. Fin ) |
| 49 |
|
fimaxre2 |
|- ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) e. Fin ) -> E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) |
| 50 |
40 48 49
|
sylancr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) |
| 51 |
|
suprcl |
|- ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
| 52 |
40 51
|
mp3an1 |
|- ( ( ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
| 53 |
36 50 52
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
| 54 |
53
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
| 55 |
|
0red |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 e. RR ) |
| 56 |
25
|
sselda |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> r e. CC ) |
| 57 |
56
|
abscld |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. RR ) |
| 58 |
57
|
adantrr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> ( abs ` r ) e. RR ) |
| 59 |
53
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
| 60 |
|
absgt0 |
|- ( r e. CC -> ( r =/= 0 <-> 0 < ( abs ` r ) ) ) |
| 61 |
56 60
|
syl |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( r =/= 0 <-> 0 < ( abs ` r ) ) ) |
| 62 |
61
|
biimpd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( r =/= 0 -> 0 < ( abs ` r ) ) ) |
| 63 |
62
|
impr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 < ( abs ` r ) ) |
| 64 |
40
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) C_ RR ) |
| 65 |
64 36 50
|
3jca |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) ) |
| 66 |
65
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) ) |
| 67 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
| 68 |
32 67
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
| 69 |
25 68
|
sylan |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
| 70 |
|
suprub |
|- ( ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) /\ ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
| 71 |
66 69 70
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
| 72 |
71
|
adantrr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
| 73 |
55 58 59 63 72
|
ltletrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 < sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
| 74 |
73
|
rexlimdvaa |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( E. r e. ( ran f u. ran g ) r =/= 0 -> 0 < sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
| 75 |
74
|
imp |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> 0 < sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
| 76 |
54 75
|
elrpd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) |
| 77 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
| 78 |
16 76 77
|
sylancr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
| 79 |
|
rpdivcl |
|- ( ( ( y / 2 ) e. RR+ /\ ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
| 80 |
15 78 79
|
syl2an |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
| 81 |
80
|
anassrs |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
| 82 |
81
|
adantlr |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
| 83 |
|
ancom |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) <-> ( y e. RR+ /\ u e. ( A [,] B ) ) ) |
| 84 |
83
|
anbi2i |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( y e. RR+ /\ u e. ( A [,] B ) ) ) ) |
| 85 |
|
an32 |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) <-> ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
| 86 |
85
|
anbi1i |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) <-> ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) ) |
| 87 |
|
an32 |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) <-> ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
| 88 |
86 87
|
bitri |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) <-> ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
| 89 |
88
|
anbi1i |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) ) |
| 90 |
|
an32 |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
| 91 |
89 90
|
bitri |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
| 92 |
|
anass |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ u e. ( A [,] B ) ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( y e. RR+ /\ u e. ( A [,] B ) ) ) ) |
| 93 |
84 91 92
|
3bitr4i |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ u e. ( A [,] B ) ) ) |
| 94 |
|
oveq12 |
|- ( ( b = w /\ a = u ) -> ( b - a ) = ( w - u ) ) |
| 95 |
94
|
ancoms |
|- ( ( a = u /\ b = w ) -> ( b - a ) = ( w - u ) ) |
| 96 |
95
|
fveq2d |
|- ( ( a = u /\ b = w ) -> ( abs ` ( b - a ) ) = ( abs ` ( w - u ) ) ) |
| 97 |
96
|
breq1d |
|- ( ( a = u /\ b = w ) -> ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <-> ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
| 98 |
|
fveq2 |
|- ( b = w -> ( G ` b ) = ( G ` w ) ) |
| 99 |
|
fveq2 |
|- ( a = u -> ( G ` a ) = ( G ` u ) ) |
| 100 |
98 99
|
oveqan12rd |
|- ( ( a = u /\ b = w ) -> ( ( G ` b ) - ( G ` a ) ) = ( ( G ` w ) - ( G ` u ) ) ) |
| 101 |
100
|
fveq2d |
|- ( ( a = u /\ b = w ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) = ( abs ` ( ( G ` w ) - ( G ` u ) ) ) ) |
| 102 |
101
|
breq1d |
|- ( ( a = u /\ b = w ) -> ( ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y <-> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 103 |
97 102
|
imbi12d |
|- ( ( a = u /\ b = w ) -> ( ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y ) <-> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) |
| 104 |
|
oveq12 |
|- ( ( b = u /\ a = w ) -> ( b - a ) = ( u - w ) ) |
| 105 |
104
|
ancoms |
|- ( ( a = w /\ b = u ) -> ( b - a ) = ( u - w ) ) |
| 106 |
105
|
fveq2d |
|- ( ( a = w /\ b = u ) -> ( abs ` ( b - a ) ) = ( abs ` ( u - w ) ) ) |
| 107 |
106
|
breq1d |
|- ( ( a = w /\ b = u ) -> ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <-> ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
| 108 |
|
fveq2 |
|- ( b = u -> ( G ` b ) = ( G ` u ) ) |
| 109 |
|
fveq2 |
|- ( a = w -> ( G ` a ) = ( G ` w ) ) |
| 110 |
108 109
|
oveqan12rd |
|- ( ( a = w /\ b = u ) -> ( ( G ` b ) - ( G ` a ) ) = ( ( G ` u ) - ( G ` w ) ) ) |
| 111 |
110
|
fveq2d |
|- ( ( a = w /\ b = u ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
| 112 |
111
|
breq1d |
|- ( ( a = w /\ b = u ) -> ( ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) |
| 113 |
107 112
|
imbi12d |
|- ( ( a = w /\ b = u ) -> ( ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y ) <-> ( ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) ) |
| 114 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 115 |
2 3 114
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 116 |
115
|
ad4antr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( A [,] B ) C_ RR ) |
| 117 |
|
simp-4l |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ph ) |
| 118 |
115 24
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 119 |
118
|
sselda |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. CC ) |
| 120 |
118
|
sselda |
|- ( ( ph /\ u e. ( A [,] B ) ) -> u e. CC ) |
| 121 |
|
abssub |
|- ( ( w e. CC /\ u e. CC ) -> ( abs ` ( w - u ) ) = ( abs ` ( u - w ) ) ) |
| 122 |
119 120 121
|
syl2anr |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ ( ph /\ w e. ( A [,] B ) ) ) -> ( abs ` ( w - u ) ) = ( abs ` ( u - w ) ) ) |
| 123 |
122
|
anandis |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( w - u ) ) = ( abs ` ( u - w ) ) ) |
| 124 |
123
|
breq1d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <-> ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
| 125 |
10
|
ffvelcdmda |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( G ` w ) e. CC ) |
| 126 |
10
|
ffvelcdmda |
|- ( ( ph /\ u e. ( A [,] B ) ) -> ( G ` u ) e. CC ) |
| 127 |
|
abssub |
|- ( ( ( G ` w ) e. CC /\ ( G ` u ) e. CC ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
| 128 |
125 126 127
|
syl2anr |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ ( ph /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
| 129 |
128
|
anandis |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
| 130 |
129
|
breq1d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) |
| 131 |
124 130
|
imbi12d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) <-> ( ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) ) |
| 132 |
117 131
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) <-> ( ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) ) |
| 133 |
2
|
rexrd |
|- ( ph -> A e. RR* ) |
| 134 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
| 135 |
133 134
|
jca |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
| 136 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { t e. RR* | ( x <_ t /\ t <_ y ) } ) |
| 137 |
136
|
elixx3g |
|- ( u e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ u e. RR* ) /\ ( A <_ u /\ u <_ B ) ) ) |
| 138 |
137
|
simprbi |
|- ( u e. ( A [,] B ) -> ( A <_ u /\ u <_ B ) ) |
| 139 |
138
|
simpld |
|- ( u e. ( A [,] B ) -> A <_ u ) |
| 140 |
136
|
elixx3g |
|- ( w e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) /\ ( A <_ w /\ w <_ B ) ) ) |
| 141 |
140
|
simprbi |
|- ( w e. ( A [,] B ) -> ( A <_ w /\ w <_ B ) ) |
| 142 |
141
|
simprd |
|- ( w e. ( A [,] B ) -> w <_ B ) |
| 143 |
139 142
|
anim12i |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> ( A <_ u /\ w <_ B ) ) |
| 144 |
|
ioossioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ u /\ w <_ B ) ) -> ( u (,) w ) C_ ( A (,) B ) ) |
| 145 |
135 143 144
|
syl2an |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) C_ ( A (,) B ) ) |
| 146 |
5
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( A (,) B ) C_ D ) |
| 147 |
145 146
|
sstrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) C_ D ) |
| 148 |
147
|
sselda |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> t e. D ) |
| 149 |
8
|
ffvelcdmda |
|- ( ( ph /\ t e. D ) -> ( F ` t ) e. CC ) |
| 150 |
149
|
abscld |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) e. RR ) |
| 151 |
150
|
rexrd |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) e. RR* ) |
| 152 |
149
|
absge0d |
|- ( ( ph /\ t e. D ) -> 0 <_ ( abs ` ( F ` t ) ) ) |
| 153 |
|
elxrge0 |
|- ( ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) <-> ( ( abs ` ( F ` t ) ) e. RR* /\ 0 <_ ( abs ` ( F ` t ) ) ) ) |
| 154 |
151 152 153
|
sylanbrc |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) ) |
| 155 |
154
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) ) |
| 156 |
148 155
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) ) |
| 157 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
| 158 |
157
|
a1i |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. ( u (,) w ) ) -> 0 e. ( 0 [,] +oo ) ) |
| 159 |
156 158
|
ifclda |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 160 |
159
|
adantr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 161 |
160
|
fmpttd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 162 |
|
itg2cl |
|- ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 163 |
161 162
|
syl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 164 |
163
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 165 |
117 164
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 166 |
165
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 167 |
|
simplll |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) ) |
| 168 |
149
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
| 169 |
148 168
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. CC ) |
| 170 |
169
|
adantllr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. CC ) |
| 171 |
|
elioore |
|- ( t e. ( u (,) w ) -> t e. RR ) |
| 172 |
17
|
ffvelcdmda |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. RR ) |
| 173 |
172
|
recnd |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. CC ) |
| 174 |
|
ax-icn |
|- _i e. CC |
| 175 |
20
|
ffvelcdmda |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. RR ) |
| 176 |
175
|
recnd |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. CC ) |
| 177 |
|
mulcl |
|- ( ( _i e. CC /\ ( g ` t ) e. CC ) -> ( _i x. ( g ` t ) ) e. CC ) |
| 178 |
174 176 177
|
sylancr |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( _i x. ( g ` t ) ) e. CC ) |
| 179 |
|
addcl |
|- ( ( ( f ` t ) e. CC /\ ( _i x. ( g ` t ) ) e. CC ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
| 180 |
173 178 179
|
syl2an |
|- ( ( ( f e. dom S.1 /\ t e. RR ) /\ ( g e. dom S.1 /\ t e. RR ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
| 181 |
180
|
anandirs |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
| 182 |
171 181
|
sylan2 |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
| 183 |
182
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
| 184 |
183
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
| 185 |
170 184
|
subcld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. CC ) |
| 186 |
185
|
abscld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR ) |
| 187 |
182
|
abscld |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR ) |
| 188 |
187
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR ) |
| 189 |
188
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR ) |
| 190 |
186 189
|
readdcld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR ) |
| 191 |
190
|
rexrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* ) |
| 192 |
185
|
absge0d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
| 193 |
181
|
absge0d |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
| 194 |
171 193
|
sylan2 |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
| 195 |
194
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
| 196 |
195
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
| 197 |
186 189 192 196
|
addge0d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
| 198 |
|
elxrge0 |
|- ( ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) <-> ( ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* /\ 0 <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
| 199 |
191 197 198
|
sylanbrc |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) ) |
| 200 |
157
|
a1i |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. ( u (,) w ) ) -> 0 e. ( 0 [,] +oo ) ) |
| 201 |
199 200
|
ifclda |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 202 |
201
|
adantr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 203 |
202
|
fmpttd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 204 |
|
itg2cl |
|- ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
| 205 |
203 204
|
syl |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
| 206 |
205
|
3adantr3 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
| 207 |
167 206
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
| 208 |
207
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
| 209 |
|
rpxr |
|- ( y e. RR+ -> y e. RR* ) |
| 210 |
209
|
ad3antlr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> y e. RR* ) |
| 211 |
159
|
adantlr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 212 |
211
|
adantr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 213 |
212
|
fmpttd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 214 |
170 184
|
npcand |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) + ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = ( F ` t ) ) |
| 215 |
214
|
fveq2d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) + ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = ( abs ` ( F ` t ) ) ) |
| 216 |
185 184
|
abstrid |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) + ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
| 217 |
215 216
|
eqbrtrrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( F ` t ) ) <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
| 218 |
|
iftrue |
|- ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) = ( abs ` ( F ` t ) ) ) |
| 219 |
218
|
adantl |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) = ( abs ` ( F ` t ) ) ) |
| 220 |
|
iftrue |
|- ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) = ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
| 221 |
220
|
adantl |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) = ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
| 222 |
217 219 221
|
3brtr4d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
| 223 |
222
|
ex |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
| 224 |
|
0le0 |
|- 0 <_ 0 |
| 225 |
224
|
a1i |
|- ( -. t e. ( u (,) w ) -> 0 <_ 0 ) |
| 226 |
|
iffalse |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) = 0 ) |
| 227 |
|
iffalse |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) = 0 ) |
| 228 |
225 226 227
|
3brtr4d |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
| 229 |
223 228
|
pm2.61d1 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
| 230 |
229
|
ralrimivw |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
| 231 |
|
reex |
|- RR e. _V |
| 232 |
231
|
a1i |
|- ( ph -> RR e. _V ) |
| 233 |
|
fvex |
|- ( abs ` ( F ` t ) ) e. _V |
| 234 |
|
c0ex |
|- 0 e. _V |
| 235 |
233 234
|
ifex |
|- if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. _V |
| 236 |
235
|
a1i |
|- ( ( ph /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. _V ) |
| 237 |
|
ovex |
|- ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. _V |
| 238 |
237 234
|
ifex |
|- if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. _V |
| 239 |
238
|
a1i |
|- ( ( ph /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. _V ) |
| 240 |
|
eqidd |
|- ( ph -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 241 |
|
eqidd |
|- ( ph -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
| 242 |
232 236 239 240 241
|
ofrfval2 |
|- ( ph -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
| 243 |
242
|
ad2antrr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
| 244 |
230 243
|
mpbird |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
| 245 |
|
itg2le |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
| 246 |
213 203 244 245
|
syl3anc |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
| 247 |
246
|
3adantr3 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
| 248 |
167 247
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
| 249 |
248
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
| 250 |
1 2 3 4 5 6 7 8
|
ftc1anclem8 |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) < y ) |
| 251 |
166 208 210 249 250
|
xrlelttrd |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y ) |
| 252 |
|
simplll |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ph ) |
| 253 |
|
simpr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> w e. ( A [,] B ) ) |
| 254 |
|
oveq2 |
|- ( x = w -> ( A (,) x ) = ( A (,) w ) ) |
| 255 |
|
itgeq1 |
|- ( ( A (,) x ) = ( A (,) w ) -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) w ) ( F ` t ) _d t ) |
| 256 |
254 255
|
syl |
|- ( x = w -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) w ) ( F ` t ) _d t ) |
| 257 |
|
itgex |
|- S. ( A (,) w ) ( F ` t ) _d t e. _V |
| 258 |
256 1 257
|
fvmpt |
|- ( w e. ( A [,] B ) -> ( G ` w ) = S. ( A (,) w ) ( F ` t ) _d t ) |
| 259 |
253 258
|
syl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( G ` w ) = S. ( A (,) w ) ( F ` t ) _d t ) |
| 260 |
2
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> A e. RR ) |
| 261 |
115
|
sselda |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. RR ) |
| 262 |
261
|
3ad2antr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> w e. RR ) |
| 263 |
115
|
sselda |
|- ( ( ph /\ u e. ( A [,] B ) ) -> u e. RR ) |
| 264 |
263
|
rexrd |
|- ( ( ph /\ u e. ( A [,] B ) ) -> u e. RR* ) |
| 265 |
264
|
3ad2antr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u e. RR* ) |
| 266 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( u e. ( A [,] B ) <-> ( u e. RR* /\ A <_ u /\ u <_ B ) ) ) |
| 267 |
133 134 266
|
syl2anc |
|- ( ph -> ( u e. ( A [,] B ) <-> ( u e. RR* /\ A <_ u /\ u <_ B ) ) ) |
| 268 |
267
|
biimpa |
|- ( ( ph /\ u e. ( A [,] B ) ) -> ( u e. RR* /\ A <_ u /\ u <_ B ) ) |
| 269 |
268
|
simp2d |
|- ( ( ph /\ u e. ( A [,] B ) ) -> A <_ u ) |
| 270 |
269
|
3ad2antr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> A <_ u ) |
| 271 |
|
simpr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u <_ w ) |
| 272 |
133
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> A e. RR* ) |
| 273 |
261
|
rexrd |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. RR* ) |
| 274 |
|
elicc1 |
|- ( ( A e. RR* /\ w e. RR* ) -> ( u e. ( A [,] w ) <-> ( u e. RR* /\ A <_ u /\ u <_ w ) ) ) |
| 275 |
272 273 274
|
syl2anc |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( u e. ( A [,] w ) <-> ( u e. RR* /\ A <_ u /\ u <_ w ) ) ) |
| 276 |
275
|
3ad2antr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( u e. ( A [,] w ) <-> ( u e. RR* /\ A <_ u /\ u <_ w ) ) ) |
| 277 |
265 270 271 276
|
mpbir3and |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u e. ( A [,] w ) ) |
| 278 |
|
iooss2 |
|- ( ( B e. RR* /\ w <_ B ) -> ( A (,) w ) C_ ( A (,) B ) ) |
| 279 |
134 142 278
|
syl2an |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) w ) C_ ( A (,) B ) ) |
| 280 |
5
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) B ) C_ D ) |
| 281 |
279 280
|
sstrd |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) w ) C_ D ) |
| 282 |
281
|
3ad2antr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( A (,) w ) C_ D ) |
| 283 |
282
|
sselda |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( A (,) w ) ) -> t e. D ) |
| 284 |
149
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
| 285 |
283 284
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( A (,) w ) ) -> ( F ` t ) e. CC ) |
| 286 |
|
eleq1w |
|- ( w = u -> ( w e. ( A [,] B ) <-> u e. ( A [,] B ) ) ) |
| 287 |
286
|
anbi2d |
|- ( w = u -> ( ( ph /\ w e. ( A [,] B ) ) <-> ( ph /\ u e. ( A [,] B ) ) ) ) |
| 288 |
|
oveq2 |
|- ( w = u -> ( A (,) w ) = ( A (,) u ) ) |
| 289 |
288
|
mpteq1d |
|- ( w = u -> ( t e. ( A (,) w ) |-> ( F ` t ) ) = ( t e. ( A (,) u ) |-> ( F ` t ) ) ) |
| 290 |
289
|
eleq1d |
|- ( w = u -> ( ( t e. ( A (,) w ) |-> ( F ` t ) ) e. L^1 <-> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) ) |
| 291 |
287 290
|
imbi12d |
|- ( w = u -> ( ( ( ph /\ w e. ( A [,] B ) ) -> ( t e. ( A (,) w ) |-> ( F ` t ) ) e. L^1 ) <-> ( ( ph /\ u e. ( A [,] B ) ) -> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) ) ) |
| 292 |
|
ioombl |
|- ( A (,) w ) e. dom vol |
| 293 |
292
|
a1i |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) w ) e. dom vol ) |
| 294 |
149
|
adantlr |
|- ( ( ( ph /\ w e. ( A [,] B ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
| 295 |
8
|
feqmptd |
|- ( ph -> F = ( t e. D |-> ( F ` t ) ) ) |
| 296 |
295 7
|
eqeltrrd |
|- ( ph -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
| 297 |
296
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
| 298 |
281 293 294 297
|
iblss |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( t e. ( A (,) w ) |-> ( F ` t ) ) e. L^1 ) |
| 299 |
291 298
|
chvarvv |
|- ( ( ph /\ u e. ( A [,] B ) ) -> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) |
| 300 |
299
|
3ad2antr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) |
| 301 |
|
ioombl |
|- ( u (,) w ) e. dom vol |
| 302 |
301
|
a1i |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) e. dom vol ) |
| 303 |
|
fvexd |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( F ` t ) e. _V ) |
| 304 |
296
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
| 305 |
147 302 303 304
|
iblss |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. ( u (,) w ) |-> ( F ` t ) ) e. L^1 ) |
| 306 |
305
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( t e. ( u (,) w ) |-> ( F ` t ) ) e. L^1 ) |
| 307 |
260 262 277 285 300 306
|
itgsplitioo |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> S. ( A (,) w ) ( F ` t ) _d t = ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) ) |
| 308 |
259 307
|
eqtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( G ` w ) = ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) ) |
| 309 |
|
simpr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u e. ( A [,] B ) ) |
| 310 |
|
oveq2 |
|- ( x = u -> ( A (,) x ) = ( A (,) u ) ) |
| 311 |
|
itgeq1 |
|- ( ( A (,) x ) = ( A (,) u ) -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) u ) ( F ` t ) _d t ) |
| 312 |
310 311
|
syl |
|- ( x = u -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) u ) ( F ` t ) _d t ) |
| 313 |
|
itgex |
|- S. ( A (,) u ) ( F ` t ) _d t e. _V |
| 314 |
312 1 313
|
fvmpt |
|- ( u e. ( A [,] B ) -> ( G ` u ) = S. ( A (,) u ) ( F ` t ) _d t ) |
| 315 |
309 314
|
syl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( G ` u ) = S. ( A (,) u ) ( F ` t ) _d t ) |
| 316 |
308 315
|
oveq12d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( G ` w ) - ( G ` u ) ) = ( ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) - S. ( A (,) u ) ( F ` t ) _d t ) ) |
| 317 |
|
fvexd |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ t e. ( A (,) u ) ) -> ( F ` t ) e. _V ) |
| 318 |
317 299
|
itgcl |
|- ( ( ph /\ u e. ( A [,] B ) ) -> S. ( A (,) u ) ( F ` t ) _d t e. CC ) |
| 319 |
318
|
adantrr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> S. ( A (,) u ) ( F ` t ) _d t e. CC ) |
| 320 |
|
fvexd |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. _V ) |
| 321 |
320 305
|
itgcl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> S. ( u (,) w ) ( F ` t ) _d t e. CC ) |
| 322 |
319 321
|
pncan2d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) - S. ( A (,) u ) ( F ` t ) _d t ) = S. ( u (,) w ) ( F ` t ) _d t ) |
| 323 |
322
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) - S. ( A (,) u ) ( F ` t ) _d t ) = S. ( u (,) w ) ( F ` t ) _d t ) |
| 324 |
316 323
|
eqtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( G ` w ) - ( G ` u ) ) = S. ( u (,) w ) ( F ` t ) _d t ) |
| 325 |
324
|
fveq2d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) ) |
| 326 |
|
df-ov |
|- ( u (,) w ) = ( (,) ` <. u , w >. ) |
| 327 |
|
opelxpi |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> <. u , w >. e. ( ( A [,] B ) X. ( A [,] B ) ) ) |
| 328 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 329 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
| 330 |
328 329
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
| 331 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
| 332 |
|
xpss12 |
|- ( ( ( A [,] B ) C_ RR* /\ ( A [,] B ) C_ RR* ) -> ( ( A [,] B ) X. ( A [,] B ) ) C_ ( RR* X. RR* ) ) |
| 333 |
331 331 332
|
mp2an |
|- ( ( A [,] B ) X. ( A [,] B ) ) C_ ( RR* X. RR* ) |
| 334 |
|
fnfvima |
|- ( ( (,) Fn ( RR* X. RR* ) /\ ( ( A [,] B ) X. ( A [,] B ) ) C_ ( RR* X. RR* ) /\ <. u , w >. e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( (,) ` <. u , w >. ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
| 335 |
330 333 334
|
mp3an12 |
|- ( <. u , w >. e. ( ( A [,] B ) X. ( A [,] B ) ) -> ( (,) ` <. u , w >. ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
| 336 |
327 335
|
syl |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> ( (,) ` <. u , w >. ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
| 337 |
326 336
|
eqeltrid |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> ( u (,) w ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
| 338 |
|
itgeq1 |
|- ( s = ( u (,) w ) -> S. s ( F ` t ) _d t = S. ( u (,) w ) ( F ` t ) _d t ) |
| 339 |
338
|
fveq2d |
|- ( s = ( u (,) w ) -> ( abs ` S. s ( F ` t ) _d t ) = ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) ) |
| 340 |
|
eleq2 |
|- ( s = ( u (,) w ) -> ( t e. s <-> t e. ( u (,) w ) ) ) |
| 341 |
340
|
ifbid |
|- ( s = ( u (,) w ) -> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) = if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) |
| 342 |
341
|
mpteq2dv |
|- ( s = ( u (,) w ) -> ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 343 |
342
|
fveq2d |
|- ( s = ( u (,) w ) -> ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) = ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 344 |
339 343
|
breq12d |
|- ( s = ( u (,) w ) -> ( ( abs ` S. s ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
| 345 |
344
|
rspccva |
|- ( ( A. s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ( abs ` S. s ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) /\ ( u (,) w ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 346 |
9 337 345
|
syl2an |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 347 |
346
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 348 |
325 347
|
eqbrtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 349 |
348
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 350 |
|
subcl |
|- ( ( ( G ` w ) e. CC /\ ( G ` u ) e. CC ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
| 351 |
125 126 350
|
syl2anr |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ ( ph /\ w e. ( A [,] B ) ) ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
| 352 |
351
|
anandis |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
| 353 |
352
|
abscld |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
| 354 |
353
|
rexrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
| 355 |
354
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
| 356 |
355
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
| 357 |
164
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 358 |
209
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> y e. RR* ) |
| 359 |
|
xrlelttr |
|- ( ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* /\ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* /\ y e. RR* ) -> ( ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 360 |
356 357 358 359
|
syl3anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 361 |
349 360
|
mpand |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 362 |
252 361
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 363 |
362
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 364 |
251 363
|
mpd |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) |
| 365 |
364
|
ex |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 366 |
103 113 116 132 365
|
wlogle |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 367 |
366
|
anassrs |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 368 |
93 367
|
sylanb |
|- ( ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ w e. ( A [,] B ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 369 |
368
|
ralrimiva |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 370 |
|
breq2 |
|- ( z = ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( ( abs ` ( w - u ) ) < z <-> ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
| 371 |
370
|
rspceaimv |
|- ( ( ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ /\ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 372 |
82 369 371
|
syl2anc |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 373 |
|
ralnex |
|- ( A. r e. ( ran f u. ran g ) -. r =/= 0 <-> -. E. r e. ( ran f u. ran g ) r =/= 0 ) |
| 374 |
|
nne |
|- ( -. r =/= 0 <-> r = 0 ) |
| 375 |
374
|
ralbii |
|- ( A. r e. ( ran f u. ran g ) -. r =/= 0 <-> A. r e. ( ran f u. ran g ) r = 0 ) |
| 376 |
373 375
|
bitr3i |
|- ( -. E. r e. ( ran f u. ran g ) r =/= 0 <-> A. r e. ( ran f u. ran g ) r = 0 ) |
| 377 |
17
|
ffnd |
|- ( f e. dom S.1 -> f Fn RR ) |
| 378 |
|
fnfvelrn |
|- ( ( f Fn RR /\ t e. RR ) -> ( f ` t ) e. ran f ) |
| 379 |
377 378
|
sylan |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. ran f ) |
| 380 |
|
elun1 |
|- ( ( f ` t ) e. ran f -> ( f ` t ) e. ( ran f u. ran g ) ) |
| 381 |
379 380
|
syl |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. ( ran f u. ran g ) ) |
| 382 |
|
eqeq1 |
|- ( r = ( f ` t ) -> ( r = 0 <-> ( f ` t ) = 0 ) ) |
| 383 |
382
|
rspcva |
|- ( ( ( f ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( f ` t ) = 0 ) |
| 384 |
381 383
|
sylan |
|- ( ( ( f e. dom S.1 /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( f ` t ) = 0 ) |
| 385 |
384
|
adantllr |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( f ` t ) = 0 ) |
| 386 |
20
|
ffnd |
|- ( g e. dom S.1 -> g Fn RR ) |
| 387 |
|
fnfvelrn |
|- ( ( g Fn RR /\ t e. RR ) -> ( g ` t ) e. ran g ) |
| 388 |
386 387
|
sylan |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. ran g ) |
| 389 |
|
elun2 |
|- ( ( g ` t ) e. ran g -> ( g ` t ) e. ( ran f u. ran g ) ) |
| 390 |
388 389
|
syl |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. ( ran f u. ran g ) ) |
| 391 |
|
eqeq1 |
|- ( r = ( g ` t ) -> ( r = 0 <-> ( g ` t ) = 0 ) ) |
| 392 |
391
|
rspcva |
|- ( ( ( g ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( g ` t ) = 0 ) |
| 393 |
392
|
oveq2d |
|- ( ( ( g ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = ( _i x. 0 ) ) |
| 394 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
| 395 |
393 394
|
eqtrdi |
|- ( ( ( g ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = 0 ) |
| 396 |
390 395
|
sylan |
|- ( ( ( g e. dom S.1 /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = 0 ) |
| 397 |
396
|
adantlll |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = 0 ) |
| 398 |
385 397
|
oveq12d |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = ( 0 + 0 ) ) |
| 399 |
398
|
an32s |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = ( 0 + 0 ) ) |
| 400 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 401 |
399 400
|
eqtrdi |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = 0 ) |
| 402 |
401
|
adantlll |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = 0 ) |
| 403 |
402
|
oveq2d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = ( if ( t e. D , ( F ` t ) , 0 ) - 0 ) ) |
| 404 |
|
0cnd |
|- ( ( ph /\ -. t e. D ) -> 0 e. CC ) |
| 405 |
149 404
|
ifclda |
|- ( ph -> if ( t e. D , ( F ` t ) , 0 ) e. CC ) |
| 406 |
405
|
subid1d |
|- ( ph -> ( if ( t e. D , ( F ` t ) , 0 ) - 0 ) = if ( t e. D , ( F ` t ) , 0 ) ) |
| 407 |
406
|
ad3antrrr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( if ( t e. D , ( F ` t ) , 0 ) - 0 ) = if ( t e. D , ( F ` t ) , 0 ) ) |
| 408 |
403 407
|
eqtrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = if ( t e. D , ( F ` t ) , 0 ) ) |
| 409 |
408
|
fveq2d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = ( abs ` if ( t e. D , ( F ` t ) , 0 ) ) ) |
| 410 |
|
fvif |
|- ( abs ` if ( t e. D , ( F ` t ) , 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , ( abs ` 0 ) ) |
| 411 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 412 |
|
ifeq2 |
|- ( ( abs ` 0 ) = 0 -> if ( t e. D , ( abs ` ( F ` t ) ) , ( abs ` 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
| 413 |
411 412
|
ax-mp |
|- if ( t e. D , ( abs ` ( F ` t ) ) , ( abs ` 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) |
| 414 |
410 413
|
eqtri |
|- ( abs ` if ( t e. D , ( F ` t ) , 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) |
| 415 |
409 414
|
eqtrdi |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
| 416 |
415
|
mpteq2dva |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) = ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 417 |
416
|
fveq2d |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) = ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 418 |
417
|
breq1d |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) <-> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) |
| 419 |
418
|
biimpd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) |
| 420 |
419
|
ex |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( A. r e. ( ran f u. ran g ) r = 0 -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) ) |
| 421 |
420
|
com23 |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> ( A. r e. ( ran f u. ran g ) r = 0 -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) ) |
| 422 |
421
|
imp32 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
| 423 |
422
|
anasss |
|- ( ( ph /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
| 424 |
423
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
| 425 |
|
1rp |
|- 1 e. RR+ |
| 426 |
425
|
ne0ii |
|- RR+ =/= (/) |
| 427 |
352
|
anassrs |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
| 428 |
427
|
abscld |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
| 429 |
428
|
adantlrr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
| 430 |
429
|
adantlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
| 431 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
| 432 |
431
|
rehalfcld |
|- ( y e. RR+ -> ( y / 2 ) e. RR ) |
| 433 |
432
|
adantl |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) -> ( y / 2 ) e. RR ) |
| 434 |
433
|
ad3antlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( y / 2 ) e. RR ) |
| 435 |
431
|
adantl |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) -> y e. RR ) |
| 436 |
435
|
ad3antlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> y e. RR ) |
| 437 |
430
|
rexrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
| 438 |
157
|
a1i |
|- ( ( ph /\ -. t e. D ) -> 0 e. ( 0 [,] +oo ) ) |
| 439 |
154 438
|
ifclda |
|- ( ph -> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 440 |
439
|
adantr |
|- ( ( ph /\ t e. RR ) -> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
| 441 |
440
|
fmpttd |
|- ( ph -> ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 442 |
|
itg2cl |
|- ( ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 443 |
441 442
|
syl |
|- ( ph -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 444 |
443
|
ad3antrrr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 445 |
434
|
rexrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( y / 2 ) e. RR* ) |
| 446 |
109 108
|
oveqan12rd |
|- ( ( b = u /\ a = w ) -> ( ( G ` a ) - ( G ` b ) ) = ( ( G ` w ) - ( G ` u ) ) ) |
| 447 |
446
|
fveq2d |
|- ( ( b = u /\ a = w ) -> ( abs ` ( ( G ` a ) - ( G ` b ) ) ) = ( abs ` ( ( G ` w ) - ( G ` u ) ) ) ) |
| 448 |
447
|
breq1d |
|- ( ( b = u /\ a = w ) -> ( ( abs ` ( ( G ` a ) - ( G ` b ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
| 449 |
99 98
|
oveqan12rd |
|- ( ( b = w /\ a = u ) -> ( ( G ` a ) - ( G ` b ) ) = ( ( G ` u ) - ( G ` w ) ) ) |
| 450 |
449
|
fveq2d |
|- ( ( b = w /\ a = u ) -> ( abs ` ( ( G ` a ) - ( G ` b ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
| 451 |
450
|
breq1d |
|- ( ( b = w /\ a = u ) -> ( ( abs ` ( ( G ` a ) - ( G ` b ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
| 452 |
129
|
breq1d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
| 453 |
321
|
abscld |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) e. RR ) |
| 454 |
453
|
rexrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) e. RR* ) |
| 455 |
443
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
| 456 |
441
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 457 |
|
breq2 |
|- ( ( abs ` ( F ` t ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) -> ( if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 458 |
|
breq2 |
|- ( 0 = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) -> ( if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ 0 <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 459 |
150
|
leidd |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) <_ ( abs ` ( F ` t ) ) ) |
| 460 |
|
breq1 |
|- ( ( abs ` ( F ` t ) ) = if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) -> ( ( abs ` ( F ` t ) ) <_ ( abs ` ( F ` t ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) ) |
| 461 |
|
breq1 |
|- ( 0 = if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) -> ( 0 <_ ( abs ` ( F ` t ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) ) |
| 462 |
460 461
|
ifboth |
|- ( ( ( abs ` ( F ` t ) ) <_ ( abs ` ( F ` t ) ) /\ 0 <_ ( abs ` ( F ` t ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) |
| 463 |
459 152 462
|
syl2anc |
|- ( ( ph /\ t e. D ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) |
| 464 |
463
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) |
| 465 |
147
|
ssneld |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( -. t e. D -> -. t e. ( u (,) w ) ) ) |
| 466 |
465
|
imp |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. D ) -> -. t e. ( u (,) w ) ) |
| 467 |
226 224
|
eqbrtrdi |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ 0 ) |
| 468 |
466 467
|
syl |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. D ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ 0 ) |
| 469 |
457 458 464 468
|
ifbothda |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
| 470 |
469
|
ralrimivw |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
| 471 |
233 234
|
ifex |
|- if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. _V |
| 472 |
471
|
a1i |
|- ( ( ph /\ t e. RR ) -> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. _V ) |
| 473 |
|
eqidd |
|- ( ph -> ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) = ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 474 |
232 236 472 240 473
|
ofrfval2 |
|- ( ph -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 475 |
474
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 476 |
470 475
|
mpbird |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
| 477 |
|
itg2le |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 478 |
161 456 476 477
|
syl3anc |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 479 |
454 163 455 346 478
|
xrletrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 480 |
479
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 481 |
325 480
|
eqbrtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 482 |
448 451 115 452 481
|
wlogle |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 483 |
482
|
anassrs |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 484 |
483
|
adantlrr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 485 |
484
|
adantlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
| 486 |
|
simplr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
| 487 |
437 444 445 485 486
|
xrlelttrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < ( y / 2 ) ) |
| 488 |
|
rphalflt |
|- ( y e. RR+ -> ( y / 2 ) < y ) |
| 489 |
488
|
adantl |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) -> ( y / 2 ) < y ) |
| 490 |
489
|
ad3antlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( y / 2 ) < y ) |
| 491 |
430 434 436 487 490
|
lttrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) |
| 492 |
491
|
a1d |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 493 |
492
|
ralrimiva |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) -> A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 494 |
493
|
ralrimivw |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) -> A. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 495 |
|
r19.2z |
|- ( ( RR+ =/= (/) /\ A. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 496 |
426 494 495
|
sylancr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 497 |
424 496
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 498 |
497
|
anassrs |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 499 |
498
|
anassrs |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 500 |
376 499
|
sylan2b |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ -. E. r e. ( ran f u. ran g ) r =/= 0 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 501 |
372 500
|
pm2.61dan |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 502 |
501
|
ex |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) |
| 503 |
502
|
rexlimdvva |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> ( E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) |
| 504 |
14 503
|
mpd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 505 |
504
|
ralrimivva |
|- ( ph -> A. u e. ( A [,] B ) A. y e. RR+ E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
| 506 |
|
ssid |
|- CC C_ CC |
| 507 |
|
elcncf2 |
|- ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> ( G : ( A [,] B ) --> CC /\ A. u e. ( A [,] B ) A. y e. RR+ E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) ) |
| 508 |
118 506 507
|
sylancl |
|- ( ph -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> ( G : ( A [,] B ) --> CC /\ A. u e. ( A [,] B ) A. y e. RR+ E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) ) |
| 509 |
10 505 508
|
mpbir2and |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |