Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1anc.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
2 |
|
ftc1anc.a |
|- ( ph -> A e. RR ) |
3 |
|
ftc1anc.b |
|- ( ph -> B e. RR ) |
4 |
|
ftc1anc.le |
|- ( ph -> A <_ B ) |
5 |
|
ftc1anc.s |
|- ( ph -> ( A (,) B ) C_ D ) |
6 |
|
ftc1anc.d |
|- ( ph -> D C_ RR ) |
7 |
|
ftc1anc.i |
|- ( ph -> F e. L^1 ) |
8 |
|
ftc1anc.f |
|- ( ph -> F : D --> CC ) |
9 |
|
ftc1anc.t |
|- ( ph -> A. s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ( abs ` S. s ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
10 |
1 2 3 4 5 6 7 8
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
11 |
|
rphalfcl |
|- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
12 |
1 2 3 4 5 6 7 8
|
ftc1anclem6 |
|- ( ( ph /\ ( y / 2 ) e. RR+ ) -> E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) |
13 |
11 12
|
sylan2 |
|- ( ( ph /\ y e. RR+ ) -> E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) |
14 |
13
|
adantrl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) |
15 |
11
|
ad2antll |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> ( y / 2 ) e. RR+ ) |
16 |
|
2rp |
|- 2 e. RR+ |
17 |
|
i1ff |
|- ( f e. dom S.1 -> f : RR --> RR ) |
18 |
17
|
frnd |
|- ( f e. dom S.1 -> ran f C_ RR ) |
19 |
18
|
adantr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ran f C_ RR ) |
20 |
|
i1ff |
|- ( g e. dom S.1 -> g : RR --> RR ) |
21 |
20
|
frnd |
|- ( g e. dom S.1 -> ran g C_ RR ) |
22 |
21
|
adantl |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ran g C_ RR ) |
23 |
19 22
|
unssd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) C_ RR ) |
24 |
|
ax-resscn |
|- RR C_ CC |
25 |
23 24
|
sstrdi |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) C_ CC ) |
26 |
|
i1f0rn |
|- ( f e. dom S.1 -> 0 e. ran f ) |
27 |
|
elun1 |
|- ( 0 e. ran f -> 0 e. ( ran f u. ran g ) ) |
28 |
26 27
|
syl |
|- ( f e. dom S.1 -> 0 e. ( ran f u. ran g ) ) |
29 |
28
|
adantr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0 e. ( ran f u. ran g ) ) |
30 |
|
absf |
|- abs : CC --> RR |
31 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
32 |
30 31
|
ax-mp |
|- abs Fn CC |
33 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ 0 e. ( ran f u. ran g ) ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
34 |
32 33
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ 0 e. ( ran f u. ran g ) ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
35 |
25 29 34
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
36 |
35
|
ne0d |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) =/= (/) ) |
37 |
|
imassrn |
|- ( abs " ( ran f u. ran g ) ) C_ ran abs |
38 |
|
frn |
|- ( abs : CC --> RR -> ran abs C_ RR ) |
39 |
30 38
|
ax-mp |
|- ran abs C_ RR |
40 |
37 39
|
sstri |
|- ( abs " ( ran f u. ran g ) ) C_ RR |
41 |
|
ffun |
|- ( abs : CC --> RR -> Fun abs ) |
42 |
30 41
|
ax-mp |
|- Fun abs |
43 |
|
i1frn |
|- ( f e. dom S.1 -> ran f e. Fin ) |
44 |
|
i1frn |
|- ( g e. dom S.1 -> ran g e. Fin ) |
45 |
|
unfi |
|- ( ( ran f e. Fin /\ ran g e. Fin ) -> ( ran f u. ran g ) e. Fin ) |
46 |
43 44 45
|
syl2an |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) e. Fin ) |
47 |
|
imafi |
|- ( ( Fun abs /\ ( ran f u. ran g ) e. Fin ) -> ( abs " ( ran f u. ran g ) ) e. Fin ) |
48 |
42 46 47
|
sylancr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) e. Fin ) |
49 |
|
fimaxre2 |
|- ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) e. Fin ) -> E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) |
50 |
40 48 49
|
sylancr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) |
51 |
|
suprcl |
|- ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
52 |
40 51
|
mp3an1 |
|- ( ( ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
53 |
36 50 52
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
54 |
53
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
55 |
|
0red |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 e. RR ) |
56 |
25
|
sselda |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> r e. CC ) |
57 |
56
|
abscld |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. RR ) |
58 |
57
|
adantrr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> ( abs ` r ) e. RR ) |
59 |
53
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
60 |
|
absgt0 |
|- ( r e. CC -> ( r =/= 0 <-> 0 < ( abs ` r ) ) ) |
61 |
56 60
|
syl |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( r =/= 0 <-> 0 < ( abs ` r ) ) ) |
62 |
61
|
biimpd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( r =/= 0 -> 0 < ( abs ` r ) ) ) |
63 |
62
|
impr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 < ( abs ` r ) ) |
64 |
40
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) C_ RR ) |
65 |
64 36 50
|
3jca |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) ) |
66 |
65
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) ) |
67 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
68 |
32 67
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
69 |
25 68
|
sylan |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
70 |
|
suprub |
|- ( ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) /\ ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
71 |
66 69 70
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
72 |
71
|
adantrr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
73 |
55 58 59 63 72
|
ltletrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 < sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
74 |
73
|
rexlimdvaa |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( E. r e. ( ran f u. ran g ) r =/= 0 -> 0 < sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
75 |
74
|
imp |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> 0 < sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
76 |
54 75
|
elrpd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) |
77 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
78 |
16 76 77
|
sylancr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
79 |
|
rpdivcl |
|- ( ( ( y / 2 ) e. RR+ /\ ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
80 |
15 78 79
|
syl2an |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
81 |
80
|
anassrs |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
82 |
81
|
adantlr |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
83 |
|
ancom |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) <-> ( y e. RR+ /\ u e. ( A [,] B ) ) ) |
84 |
83
|
anbi2i |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( y e. RR+ /\ u e. ( A [,] B ) ) ) ) |
85 |
|
an32 |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) <-> ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
86 |
85
|
anbi1i |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) <-> ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) ) |
87 |
|
an32 |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) <-> ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
88 |
86 87
|
bitri |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) <-> ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
89 |
88
|
anbi1i |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) ) |
90 |
|
an32 |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
91 |
89 90
|
bitri |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) ) |
92 |
|
anass |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ u e. ( A [,] B ) ) <-> ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( y e. RR+ /\ u e. ( A [,] B ) ) ) ) |
93 |
84 91 92
|
3bitr4i |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) <-> ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ u e. ( A [,] B ) ) ) |
94 |
|
oveq12 |
|- ( ( b = w /\ a = u ) -> ( b - a ) = ( w - u ) ) |
95 |
94
|
ancoms |
|- ( ( a = u /\ b = w ) -> ( b - a ) = ( w - u ) ) |
96 |
95
|
fveq2d |
|- ( ( a = u /\ b = w ) -> ( abs ` ( b - a ) ) = ( abs ` ( w - u ) ) ) |
97 |
96
|
breq1d |
|- ( ( a = u /\ b = w ) -> ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <-> ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
98 |
|
fveq2 |
|- ( b = w -> ( G ` b ) = ( G ` w ) ) |
99 |
|
fveq2 |
|- ( a = u -> ( G ` a ) = ( G ` u ) ) |
100 |
98 99
|
oveqan12rd |
|- ( ( a = u /\ b = w ) -> ( ( G ` b ) - ( G ` a ) ) = ( ( G ` w ) - ( G ` u ) ) ) |
101 |
100
|
fveq2d |
|- ( ( a = u /\ b = w ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) = ( abs ` ( ( G ` w ) - ( G ` u ) ) ) ) |
102 |
101
|
breq1d |
|- ( ( a = u /\ b = w ) -> ( ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y <-> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
103 |
97 102
|
imbi12d |
|- ( ( a = u /\ b = w ) -> ( ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y ) <-> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) |
104 |
|
oveq12 |
|- ( ( b = u /\ a = w ) -> ( b - a ) = ( u - w ) ) |
105 |
104
|
ancoms |
|- ( ( a = w /\ b = u ) -> ( b - a ) = ( u - w ) ) |
106 |
105
|
fveq2d |
|- ( ( a = w /\ b = u ) -> ( abs ` ( b - a ) ) = ( abs ` ( u - w ) ) ) |
107 |
106
|
breq1d |
|- ( ( a = w /\ b = u ) -> ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <-> ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
108 |
|
fveq2 |
|- ( b = u -> ( G ` b ) = ( G ` u ) ) |
109 |
|
fveq2 |
|- ( a = w -> ( G ` a ) = ( G ` w ) ) |
110 |
108 109
|
oveqan12rd |
|- ( ( a = w /\ b = u ) -> ( ( G ` b ) - ( G ` a ) ) = ( ( G ` u ) - ( G ` w ) ) ) |
111 |
110
|
fveq2d |
|- ( ( a = w /\ b = u ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
112 |
111
|
breq1d |
|- ( ( a = w /\ b = u ) -> ( ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) |
113 |
107 112
|
imbi12d |
|- ( ( a = w /\ b = u ) -> ( ( ( abs ` ( b - a ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` b ) - ( G ` a ) ) ) < y ) <-> ( ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) ) |
114 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
115 |
2 3 114
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
116 |
115
|
ad4antr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( A [,] B ) C_ RR ) |
117 |
|
simp-4l |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ph ) |
118 |
115 24
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
119 |
118
|
sselda |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. CC ) |
120 |
118
|
sselda |
|- ( ( ph /\ u e. ( A [,] B ) ) -> u e. CC ) |
121 |
|
abssub |
|- ( ( w e. CC /\ u e. CC ) -> ( abs ` ( w - u ) ) = ( abs ` ( u - w ) ) ) |
122 |
119 120 121
|
syl2anr |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ ( ph /\ w e. ( A [,] B ) ) ) -> ( abs ` ( w - u ) ) = ( abs ` ( u - w ) ) ) |
123 |
122
|
anandis |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( w - u ) ) = ( abs ` ( u - w ) ) ) |
124 |
123
|
breq1d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <-> ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
125 |
10
|
ffvelrnda |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( G ` w ) e. CC ) |
126 |
10
|
ffvelrnda |
|- ( ( ph /\ u e. ( A [,] B ) ) -> ( G ` u ) e. CC ) |
127 |
|
abssub |
|- ( ( ( G ` w ) e. CC /\ ( G ` u ) e. CC ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
128 |
125 126 127
|
syl2anr |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ ( ph /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
129 |
128
|
anandis |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
130 |
129
|
breq1d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) |
131 |
124 130
|
imbi12d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) <-> ( ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) ) |
132 |
117 131
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) <-> ( ( abs ` ( u - w ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) < y ) ) ) |
133 |
2
|
rexrd |
|- ( ph -> A e. RR* ) |
134 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
135 |
133 134
|
jca |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
136 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { t e. RR* | ( x <_ t /\ t <_ y ) } ) |
137 |
136
|
elixx3g |
|- ( u e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ u e. RR* ) /\ ( A <_ u /\ u <_ B ) ) ) |
138 |
137
|
simprbi |
|- ( u e. ( A [,] B ) -> ( A <_ u /\ u <_ B ) ) |
139 |
138
|
simpld |
|- ( u e. ( A [,] B ) -> A <_ u ) |
140 |
136
|
elixx3g |
|- ( w e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) /\ ( A <_ w /\ w <_ B ) ) ) |
141 |
140
|
simprbi |
|- ( w e. ( A [,] B ) -> ( A <_ w /\ w <_ B ) ) |
142 |
141
|
simprd |
|- ( w e. ( A [,] B ) -> w <_ B ) |
143 |
139 142
|
anim12i |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> ( A <_ u /\ w <_ B ) ) |
144 |
|
ioossioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ u /\ w <_ B ) ) -> ( u (,) w ) C_ ( A (,) B ) ) |
145 |
135 143 144
|
syl2an |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) C_ ( A (,) B ) ) |
146 |
5
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( A (,) B ) C_ D ) |
147 |
145 146
|
sstrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) C_ D ) |
148 |
147
|
sselda |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> t e. D ) |
149 |
8
|
ffvelrnda |
|- ( ( ph /\ t e. D ) -> ( F ` t ) e. CC ) |
150 |
149
|
abscld |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) e. RR ) |
151 |
150
|
rexrd |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) e. RR* ) |
152 |
149
|
absge0d |
|- ( ( ph /\ t e. D ) -> 0 <_ ( abs ` ( F ` t ) ) ) |
153 |
|
elxrge0 |
|- ( ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) <-> ( ( abs ` ( F ` t ) ) e. RR* /\ 0 <_ ( abs ` ( F ` t ) ) ) ) |
154 |
151 152 153
|
sylanbrc |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) ) |
155 |
154
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) ) |
156 |
148 155
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( F ` t ) ) e. ( 0 [,] +oo ) ) |
157 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
158 |
157
|
a1i |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. ( u (,) w ) ) -> 0 e. ( 0 [,] +oo ) ) |
159 |
156 158
|
ifclda |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
160 |
159
|
adantr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
161 |
160
|
fmpttd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
162 |
|
itg2cl |
|- ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
163 |
161 162
|
syl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
164 |
163
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
165 |
117 164
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
166 |
165
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
167 |
|
simplll |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) ) |
168 |
149
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
169 |
148 168
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. CC ) |
170 |
169
|
adantllr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. CC ) |
171 |
|
elioore |
|- ( t e. ( u (,) w ) -> t e. RR ) |
172 |
17
|
ffvelrnda |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. RR ) |
173 |
172
|
recnd |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. CC ) |
174 |
|
ax-icn |
|- _i e. CC |
175 |
20
|
ffvelrnda |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. RR ) |
176 |
175
|
recnd |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. CC ) |
177 |
|
mulcl |
|- ( ( _i e. CC /\ ( g ` t ) e. CC ) -> ( _i x. ( g ` t ) ) e. CC ) |
178 |
174 176 177
|
sylancr |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( _i x. ( g ` t ) ) e. CC ) |
179 |
|
addcl |
|- ( ( ( f ` t ) e. CC /\ ( _i x. ( g ` t ) ) e. CC ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
180 |
173 178 179
|
syl2an |
|- ( ( ( f e. dom S.1 /\ t e. RR ) /\ ( g e. dom S.1 /\ t e. RR ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
181 |
180
|
anandirs |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
182 |
171 181
|
sylan2 |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
183 |
182
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
184 |
183
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
185 |
170 184
|
subcld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. CC ) |
186 |
185
|
abscld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR ) |
187 |
182
|
abscld |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR ) |
188 |
187
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR ) |
189 |
188
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR ) |
190 |
186 189
|
readdcld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR ) |
191 |
190
|
rexrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* ) |
192 |
185
|
absge0d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
193 |
181
|
absge0d |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
194 |
171 193
|
sylan2 |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
195 |
194
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
196 |
195
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
197 |
186 189 192 196
|
addge0d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
198 |
|
elxrge0 |
|- ( ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) <-> ( ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* /\ 0 <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
199 |
191 197 198
|
sylanbrc |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) ) |
200 |
157
|
a1i |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. ( u (,) w ) ) -> 0 e. ( 0 [,] +oo ) ) |
201 |
199 200
|
ifclda |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
202 |
201
|
adantr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
203 |
202
|
fmpttd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
204 |
|
itg2cl |
|- ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
205 |
203 204
|
syl |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
206 |
205
|
3adantr3 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
207 |
167 206
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
208 |
207
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
209 |
|
rpxr |
|- ( y e. RR+ -> y e. RR* ) |
210 |
209
|
ad3antlr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> y e. RR* ) |
211 |
159
|
adantlr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
212 |
211
|
adantr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
213 |
212
|
fmpttd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
214 |
170 184
|
npcand |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) + ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = ( F ` t ) ) |
215 |
214
|
fveq2d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) + ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = ( abs ` ( F ` t ) ) ) |
216 |
185 184
|
abstrid |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) + ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
217 |
215 216
|
eqbrtrrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( F ` t ) ) <_ ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
218 |
|
iftrue |
|- ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) = ( abs ` ( F ` t ) ) ) |
219 |
218
|
adantl |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) = ( abs ` ( F ` t ) ) ) |
220 |
|
iftrue |
|- ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) = ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
221 |
220
|
adantl |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) = ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
222 |
217 219 221
|
3brtr4d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
223 |
222
|
ex |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
224 |
|
0le0 |
|- 0 <_ 0 |
225 |
224
|
a1i |
|- ( -. t e. ( u (,) w ) -> 0 <_ 0 ) |
226 |
|
iffalse |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) = 0 ) |
227 |
|
iffalse |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) = 0 ) |
228 |
225 226 227
|
3brtr4d |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
229 |
223 228
|
pm2.61d1 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
230 |
229
|
ralrimivw |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) |
231 |
|
reex |
|- RR e. _V |
232 |
231
|
a1i |
|- ( ph -> RR e. _V ) |
233 |
|
fvex |
|- ( abs ` ( F ` t ) ) e. _V |
234 |
|
c0ex |
|- 0 e. _V |
235 |
233 234
|
ifex |
|- if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. _V |
236 |
235
|
a1i |
|- ( ( ph /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) e. _V ) |
237 |
|
ovex |
|- ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. _V |
238 |
237 234
|
ifex |
|- if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. _V |
239 |
238
|
a1i |
|- ( ( ph /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. _V ) |
240 |
|
eqidd |
|- ( ph -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) |
241 |
|
eqidd |
|- ( ph -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
242 |
232 236 239 240 241
|
ofrfval2 |
|- ( ph -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
243 |
242
|
ad2antrr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
244 |
230 243
|
mpbird |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
245 |
|
itg2le |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
246 |
213 203 244 245
|
syl3anc |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
247 |
246
|
3adantr3 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
248 |
167 247
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
249 |
248
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) |
250 |
1 2 3 4 5 6 7 8
|
ftc1anclem8 |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) + ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) < y ) |
251 |
166 208 210 249 250
|
xrlelttrd |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y ) |
252 |
|
simplll |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ph ) |
253 |
|
simpr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> w e. ( A [,] B ) ) |
254 |
|
oveq2 |
|- ( x = w -> ( A (,) x ) = ( A (,) w ) ) |
255 |
|
itgeq1 |
|- ( ( A (,) x ) = ( A (,) w ) -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) w ) ( F ` t ) _d t ) |
256 |
254 255
|
syl |
|- ( x = w -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) w ) ( F ` t ) _d t ) |
257 |
|
itgex |
|- S. ( A (,) w ) ( F ` t ) _d t e. _V |
258 |
256 1 257
|
fvmpt |
|- ( w e. ( A [,] B ) -> ( G ` w ) = S. ( A (,) w ) ( F ` t ) _d t ) |
259 |
253 258
|
syl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( G ` w ) = S. ( A (,) w ) ( F ` t ) _d t ) |
260 |
2
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> A e. RR ) |
261 |
115
|
sselda |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. RR ) |
262 |
261
|
3ad2antr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> w e. RR ) |
263 |
115
|
sselda |
|- ( ( ph /\ u e. ( A [,] B ) ) -> u e. RR ) |
264 |
263
|
rexrd |
|- ( ( ph /\ u e. ( A [,] B ) ) -> u e. RR* ) |
265 |
264
|
3ad2antr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u e. RR* ) |
266 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( u e. ( A [,] B ) <-> ( u e. RR* /\ A <_ u /\ u <_ B ) ) ) |
267 |
133 134 266
|
syl2anc |
|- ( ph -> ( u e. ( A [,] B ) <-> ( u e. RR* /\ A <_ u /\ u <_ B ) ) ) |
268 |
267
|
biimpa |
|- ( ( ph /\ u e. ( A [,] B ) ) -> ( u e. RR* /\ A <_ u /\ u <_ B ) ) |
269 |
268
|
simp2d |
|- ( ( ph /\ u e. ( A [,] B ) ) -> A <_ u ) |
270 |
269
|
3ad2antr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> A <_ u ) |
271 |
|
simpr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u <_ w ) |
272 |
133
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> A e. RR* ) |
273 |
261
|
rexrd |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. RR* ) |
274 |
|
elicc1 |
|- ( ( A e. RR* /\ w e. RR* ) -> ( u e. ( A [,] w ) <-> ( u e. RR* /\ A <_ u /\ u <_ w ) ) ) |
275 |
272 273 274
|
syl2anc |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( u e. ( A [,] w ) <-> ( u e. RR* /\ A <_ u /\ u <_ w ) ) ) |
276 |
275
|
3ad2antr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( u e. ( A [,] w ) <-> ( u e. RR* /\ A <_ u /\ u <_ w ) ) ) |
277 |
265 270 271 276
|
mpbir3and |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u e. ( A [,] w ) ) |
278 |
|
iooss2 |
|- ( ( B e. RR* /\ w <_ B ) -> ( A (,) w ) C_ ( A (,) B ) ) |
279 |
134 142 278
|
syl2an |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) w ) C_ ( A (,) B ) ) |
280 |
5
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) B ) C_ D ) |
281 |
279 280
|
sstrd |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) w ) C_ D ) |
282 |
281
|
3ad2antr2 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( A (,) w ) C_ D ) |
283 |
282
|
sselda |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( A (,) w ) ) -> t e. D ) |
284 |
149
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
285 |
283 284
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( A (,) w ) ) -> ( F ` t ) e. CC ) |
286 |
|
eleq1w |
|- ( w = u -> ( w e. ( A [,] B ) <-> u e. ( A [,] B ) ) ) |
287 |
286
|
anbi2d |
|- ( w = u -> ( ( ph /\ w e. ( A [,] B ) ) <-> ( ph /\ u e. ( A [,] B ) ) ) ) |
288 |
|
oveq2 |
|- ( w = u -> ( A (,) w ) = ( A (,) u ) ) |
289 |
288
|
mpteq1d |
|- ( w = u -> ( t e. ( A (,) w ) |-> ( F ` t ) ) = ( t e. ( A (,) u ) |-> ( F ` t ) ) ) |
290 |
289
|
eleq1d |
|- ( w = u -> ( ( t e. ( A (,) w ) |-> ( F ` t ) ) e. L^1 <-> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) ) |
291 |
287 290
|
imbi12d |
|- ( w = u -> ( ( ( ph /\ w e. ( A [,] B ) ) -> ( t e. ( A (,) w ) |-> ( F ` t ) ) e. L^1 ) <-> ( ( ph /\ u e. ( A [,] B ) ) -> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) ) ) |
292 |
|
ioombl |
|- ( A (,) w ) e. dom vol |
293 |
292
|
a1i |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A (,) w ) e. dom vol ) |
294 |
149
|
adantlr |
|- ( ( ( ph /\ w e. ( A [,] B ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
295 |
8
|
feqmptd |
|- ( ph -> F = ( t e. D |-> ( F ` t ) ) ) |
296 |
295 7
|
eqeltrrd |
|- ( ph -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
297 |
296
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
298 |
281 293 294 297
|
iblss |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( t e. ( A (,) w ) |-> ( F ` t ) ) e. L^1 ) |
299 |
291 298
|
chvarvv |
|- ( ( ph /\ u e. ( A [,] B ) ) -> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) |
300 |
299
|
3ad2antr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( t e. ( A (,) u ) |-> ( F ` t ) ) e. L^1 ) |
301 |
|
ioombl |
|- ( u (,) w ) e. dom vol |
302 |
301
|
a1i |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) e. dom vol ) |
303 |
|
fvexd |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( F ` t ) e. _V ) |
304 |
296
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
305 |
147 302 303 304
|
iblss |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. ( u (,) w ) |-> ( F ` t ) ) e. L^1 ) |
306 |
305
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( t e. ( u (,) w ) |-> ( F ` t ) ) e. L^1 ) |
307 |
260 262 277 285 300 306
|
itgsplitioo |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> S. ( A (,) w ) ( F ` t ) _d t = ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) ) |
308 |
259 307
|
eqtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( G ` w ) = ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) ) |
309 |
|
simpr1 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> u e. ( A [,] B ) ) |
310 |
|
oveq2 |
|- ( x = u -> ( A (,) x ) = ( A (,) u ) ) |
311 |
|
itgeq1 |
|- ( ( A (,) x ) = ( A (,) u ) -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) u ) ( F ` t ) _d t ) |
312 |
310 311
|
syl |
|- ( x = u -> S. ( A (,) x ) ( F ` t ) _d t = S. ( A (,) u ) ( F ` t ) _d t ) |
313 |
|
itgex |
|- S. ( A (,) u ) ( F ` t ) _d t e. _V |
314 |
312 1 313
|
fvmpt |
|- ( u e. ( A [,] B ) -> ( G ` u ) = S. ( A (,) u ) ( F ` t ) _d t ) |
315 |
309 314
|
syl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( G ` u ) = S. ( A (,) u ) ( F ` t ) _d t ) |
316 |
308 315
|
oveq12d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( G ` w ) - ( G ` u ) ) = ( ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) - S. ( A (,) u ) ( F ` t ) _d t ) ) |
317 |
|
fvexd |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ t e. ( A (,) u ) ) -> ( F ` t ) e. _V ) |
318 |
317 299
|
itgcl |
|- ( ( ph /\ u e. ( A [,] B ) ) -> S. ( A (,) u ) ( F ` t ) _d t e. CC ) |
319 |
318
|
adantrr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> S. ( A (,) u ) ( F ` t ) _d t e. CC ) |
320 |
|
fvexd |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. _V ) |
321 |
320 305
|
itgcl |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> S. ( u (,) w ) ( F ` t ) _d t e. CC ) |
322 |
319 321
|
pncan2d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) - S. ( A (,) u ) ( F ` t ) _d t ) = S. ( u (,) w ) ( F ` t ) _d t ) |
323 |
322
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S. ( A (,) u ) ( F ` t ) _d t + S. ( u (,) w ) ( F ` t ) _d t ) - S. ( A (,) u ) ( F ` t ) _d t ) = S. ( u (,) w ) ( F ` t ) _d t ) |
324 |
316 323
|
eqtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( G ` w ) - ( G ` u ) ) = S. ( u (,) w ) ( F ` t ) _d t ) |
325 |
324
|
fveq2d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) = ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) ) |
326 |
|
df-ov |
|- ( u (,) w ) = ( (,) ` <. u , w >. ) |
327 |
|
opelxpi |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> <. u , w >. e. ( ( A [,] B ) X. ( A [,] B ) ) ) |
328 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
329 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
330 |
328 329
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
331 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
332 |
|
xpss12 |
|- ( ( ( A [,] B ) C_ RR* /\ ( A [,] B ) C_ RR* ) -> ( ( A [,] B ) X. ( A [,] B ) ) C_ ( RR* X. RR* ) ) |
333 |
331 331 332
|
mp2an |
|- ( ( A [,] B ) X. ( A [,] B ) ) C_ ( RR* X. RR* ) |
334 |
|
fnfvima |
|- ( ( (,) Fn ( RR* X. RR* ) /\ ( ( A [,] B ) X. ( A [,] B ) ) C_ ( RR* X. RR* ) /\ <. u , w >. e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( (,) ` <. u , w >. ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
335 |
330 333 334
|
mp3an12 |
|- ( <. u , w >. e. ( ( A [,] B ) X. ( A [,] B ) ) -> ( (,) ` <. u , w >. ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
336 |
327 335
|
syl |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> ( (,) ` <. u , w >. ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
337 |
326 336
|
eqeltrid |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> ( u (,) w ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
338 |
|
itgeq1 |
|- ( s = ( u (,) w ) -> S. s ( F ` t ) _d t = S. ( u (,) w ) ( F ` t ) _d t ) |
339 |
338
|
fveq2d |
|- ( s = ( u (,) w ) -> ( abs ` S. s ( F ` t ) _d t ) = ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) ) |
340 |
|
eleq2 |
|- ( s = ( u (,) w ) -> ( t e. s <-> t e. ( u (,) w ) ) ) |
341 |
340
|
ifbid |
|- ( s = ( u (,) w ) -> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) = if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) |
342 |
341
|
mpteq2dv |
|- ( s = ( u (,) w ) -> ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) |
343 |
342
|
fveq2d |
|- ( s = ( u (,) w ) -> ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) = ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
344 |
339 343
|
breq12d |
|- ( s = ( u (,) w ) -> ( ( abs ` S. s ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
345 |
344
|
rspccva |
|- ( ( A. s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ( abs ` S. s ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( F ` t ) ) , 0 ) ) ) /\ ( u (,) w ) e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
346 |
9 337 345
|
syl2an |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
347 |
346
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
348 |
325 347
|
eqbrtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
349 |
348
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
350 |
|
subcl |
|- ( ( ( G ` w ) e. CC /\ ( G ` u ) e. CC ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
351 |
125 126 350
|
syl2anr |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ ( ph /\ w e. ( A [,] B ) ) ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
352 |
351
|
anandis |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
353 |
352
|
abscld |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
354 |
353
|
rexrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
355 |
354
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
356 |
355
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
357 |
164
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
358 |
209
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> y e. RR* ) |
359 |
|
xrlelttr |
|- ( ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* /\ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* /\ y e. RR* ) -> ( ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
360 |
356 357 358 359
|
syl3anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
361 |
349 360
|
mpand |
|- ( ( ( ph /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
362 |
252 361
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
363 |
362
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) < y -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
364 |
251 363
|
mpd |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) |
365 |
364
|
ex |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
366 |
103 113 116 132 365
|
wlogle |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
367 |
366
|
anassrs |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
368 |
93 367
|
sylanb |
|- ( ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ w e. ( A [,] B ) ) -> ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
369 |
368
|
ralrimiva |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
370 |
|
breq2 |
|- ( z = ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( ( abs ` ( w - u ) ) < z <-> ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
371 |
370
|
rspceaimv |
|- ( ( ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ /\ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
372 |
82 369 371
|
syl2anc |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
373 |
|
ralnex |
|- ( A. r e. ( ran f u. ran g ) -. r =/= 0 <-> -. E. r e. ( ran f u. ran g ) r =/= 0 ) |
374 |
|
nne |
|- ( -. r =/= 0 <-> r = 0 ) |
375 |
374
|
ralbii |
|- ( A. r e. ( ran f u. ran g ) -. r =/= 0 <-> A. r e. ( ran f u. ran g ) r = 0 ) |
376 |
373 375
|
bitr3i |
|- ( -. E. r e. ( ran f u. ran g ) r =/= 0 <-> A. r e. ( ran f u. ran g ) r = 0 ) |
377 |
17
|
ffnd |
|- ( f e. dom S.1 -> f Fn RR ) |
378 |
|
fnfvelrn |
|- ( ( f Fn RR /\ t e. RR ) -> ( f ` t ) e. ran f ) |
379 |
377 378
|
sylan |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. ran f ) |
380 |
|
elun1 |
|- ( ( f ` t ) e. ran f -> ( f ` t ) e. ( ran f u. ran g ) ) |
381 |
379 380
|
syl |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. ( ran f u. ran g ) ) |
382 |
|
eqeq1 |
|- ( r = ( f ` t ) -> ( r = 0 <-> ( f ` t ) = 0 ) ) |
383 |
382
|
rspcva |
|- ( ( ( f ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( f ` t ) = 0 ) |
384 |
381 383
|
sylan |
|- ( ( ( f e. dom S.1 /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( f ` t ) = 0 ) |
385 |
384
|
adantllr |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( f ` t ) = 0 ) |
386 |
20
|
ffnd |
|- ( g e. dom S.1 -> g Fn RR ) |
387 |
|
fnfvelrn |
|- ( ( g Fn RR /\ t e. RR ) -> ( g ` t ) e. ran g ) |
388 |
386 387
|
sylan |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. ran g ) |
389 |
|
elun2 |
|- ( ( g ` t ) e. ran g -> ( g ` t ) e. ( ran f u. ran g ) ) |
390 |
388 389
|
syl |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. ( ran f u. ran g ) ) |
391 |
|
eqeq1 |
|- ( r = ( g ` t ) -> ( r = 0 <-> ( g ` t ) = 0 ) ) |
392 |
391
|
rspcva |
|- ( ( ( g ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( g ` t ) = 0 ) |
393 |
392
|
oveq2d |
|- ( ( ( g ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = ( _i x. 0 ) ) |
394 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
395 |
393 394
|
eqtrdi |
|- ( ( ( g ` t ) e. ( ran f u. ran g ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = 0 ) |
396 |
390 395
|
sylan |
|- ( ( ( g e. dom S.1 /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = 0 ) |
397 |
396
|
adantlll |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( _i x. ( g ` t ) ) = 0 ) |
398 |
385 397
|
oveq12d |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = ( 0 + 0 ) ) |
399 |
398
|
an32s |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = ( 0 + 0 ) ) |
400 |
|
00id |
|- ( 0 + 0 ) = 0 |
401 |
399 400
|
eqtrdi |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = 0 ) |
402 |
401
|
adantlll |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) = 0 ) |
403 |
402
|
oveq2d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = ( if ( t e. D , ( F ` t ) , 0 ) - 0 ) ) |
404 |
|
0cnd |
|- ( ( ph /\ -. t e. D ) -> 0 e. CC ) |
405 |
149 404
|
ifclda |
|- ( ph -> if ( t e. D , ( F ` t ) , 0 ) e. CC ) |
406 |
405
|
subid1d |
|- ( ph -> ( if ( t e. D , ( F ` t ) , 0 ) - 0 ) = if ( t e. D , ( F ` t ) , 0 ) ) |
407 |
406
|
ad3antrrr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( if ( t e. D , ( F ` t ) , 0 ) - 0 ) = if ( t e. D , ( F ` t ) , 0 ) ) |
408 |
403 407
|
eqtrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = if ( t e. D , ( F ` t ) , 0 ) ) |
409 |
408
|
fveq2d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = ( abs ` if ( t e. D , ( F ` t ) , 0 ) ) ) |
410 |
|
fvif |
|- ( abs ` if ( t e. D , ( F ` t ) , 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , ( abs ` 0 ) ) |
411 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
412 |
|
ifeq2 |
|- ( ( abs ` 0 ) = 0 -> if ( t e. D , ( abs ` ( F ` t ) ) , ( abs ` 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
413 |
411 412
|
ax-mp |
|- if ( t e. D , ( abs ` ( F ` t ) ) , ( abs ` 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) |
414 |
410 413
|
eqtri |
|- ( abs ` if ( t e. D , ( F ` t ) , 0 ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) |
415 |
409 414
|
eqtrdi |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
416 |
415
|
mpteq2dva |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) = ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
417 |
416
|
fveq2d |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) = ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
418 |
417
|
breq1d |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) <-> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) |
419 |
418
|
biimpd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) |
420 |
419
|
ex |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( A. r e. ( ran f u. ran g ) r = 0 -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) ) |
421 |
420
|
com23 |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> ( A. r e. ( ran f u. ran g ) r = 0 -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) ) ) |
422 |
421
|
imp32 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
423 |
422
|
anasss |
|- ( ( ph /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
424 |
423
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
425 |
|
1rp |
|- 1 e. RR+ |
426 |
425
|
ne0ii |
|- RR+ =/= (/) |
427 |
352
|
anassrs |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( G ` w ) - ( G ` u ) ) e. CC ) |
428 |
427
|
abscld |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
429 |
428
|
adantlrr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
430 |
429
|
adantlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR ) |
431 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
432 |
431
|
rehalfcld |
|- ( y e. RR+ -> ( y / 2 ) e. RR ) |
433 |
432
|
adantl |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) -> ( y / 2 ) e. RR ) |
434 |
433
|
ad3antlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( y / 2 ) e. RR ) |
435 |
431
|
adantl |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) -> y e. RR ) |
436 |
435
|
ad3antlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> y e. RR ) |
437 |
430
|
rexrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) e. RR* ) |
438 |
157
|
a1i |
|- ( ( ph /\ -. t e. D ) -> 0 e. ( 0 [,] +oo ) ) |
439 |
154 438
|
ifclda |
|- ( ph -> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
440 |
439
|
adantr |
|- ( ( ph /\ t e. RR ) -> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. ( 0 [,] +oo ) ) |
441 |
440
|
fmpttd |
|- ( ph -> ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
442 |
|
itg2cl |
|- ( ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
443 |
441 442
|
syl |
|- ( ph -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
444 |
443
|
ad3antrrr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
445 |
434
|
rexrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( y / 2 ) e. RR* ) |
446 |
109 108
|
oveqan12rd |
|- ( ( b = u /\ a = w ) -> ( ( G ` a ) - ( G ` b ) ) = ( ( G ` w ) - ( G ` u ) ) ) |
447 |
446
|
fveq2d |
|- ( ( b = u /\ a = w ) -> ( abs ` ( ( G ` a ) - ( G ` b ) ) ) = ( abs ` ( ( G ` w ) - ( G ` u ) ) ) ) |
448 |
447
|
breq1d |
|- ( ( b = u /\ a = w ) -> ( ( abs ` ( ( G ` a ) - ( G ` b ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
449 |
99 98
|
oveqan12rd |
|- ( ( b = w /\ a = u ) -> ( ( G ` a ) - ( G ` b ) ) = ( ( G ` u ) - ( G ` w ) ) ) |
450 |
449
|
fveq2d |
|- ( ( b = w /\ a = u ) -> ( abs ` ( ( G ` a ) - ( G ` b ) ) ) = ( abs ` ( ( G ` u ) - ( G ` w ) ) ) ) |
451 |
450
|
breq1d |
|- ( ( b = w /\ a = u ) -> ( ( abs ` ( ( G ` a ) - ( G ` b ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
452 |
129
|
breq1d |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) <-> ( abs ` ( ( G ` u ) - ( G ` w ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) ) |
453 |
321
|
abscld |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) e. RR ) |
454 |
453
|
rexrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) e. RR* ) |
455 |
443
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) e. RR* ) |
456 |
441
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
457 |
|
breq2 |
|- ( ( abs ` ( F ` t ) ) = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) -> ( if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
458 |
|
breq2 |
|- ( 0 = if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) -> ( if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ 0 <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
459 |
150
|
leidd |
|- ( ( ph /\ t e. D ) -> ( abs ` ( F ` t ) ) <_ ( abs ` ( F ` t ) ) ) |
460 |
|
breq1 |
|- ( ( abs ` ( F ` t ) ) = if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) -> ( ( abs ` ( F ` t ) ) <_ ( abs ` ( F ` t ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) ) |
461 |
|
breq1 |
|- ( 0 = if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) -> ( 0 <_ ( abs ` ( F ` t ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) ) |
462 |
460 461
|
ifboth |
|- ( ( ( abs ` ( F ` t ) ) <_ ( abs ` ( F ` t ) ) /\ 0 <_ ( abs ` ( F ` t ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) |
463 |
459 152 462
|
syl2anc |
|- ( ( ph /\ t e. D ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) |
464 |
463
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ ( abs ` ( F ` t ) ) ) |
465 |
147
|
ssneld |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( -. t e. D -> -. t e. ( u (,) w ) ) ) |
466 |
465
|
imp |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. D ) -> -. t e. ( u (,) w ) ) |
467 |
226 224
|
eqbrtrdi |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ 0 ) |
468 |
466 467
|
syl |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. D ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ 0 ) |
469 |
457 458 464 468
|
ifbothda |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
470 |
469
|
ralrimivw |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) |
471 |
233 234
|
ifex |
|- if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. _V |
472 |
471
|
a1i |
|- ( ( ph /\ t e. RR ) -> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) e. _V ) |
473 |
|
eqidd |
|- ( ph -> ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) = ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
474 |
232 236 472 240 473
|
ofrfval2 |
|- ( ph -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
475 |
474
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) <_ if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
476 |
470 475
|
mpbird |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) |
477 |
|
itg2le |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
478 |
161 456 476 477
|
syl3anc |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( F ` t ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
479 |
454 163 455 346 478
|
xrletrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
480 |
479
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` S. ( u (,) w ) ( F ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
481 |
325 480
|
eqbrtrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
482 |
448 451 115 452 481
|
wlogle |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
483 |
482
|
anassrs |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
484 |
483
|
adantlrr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
485 |
484
|
adantlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) ) |
486 |
|
simplr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) |
487 |
437 444 445 485 486
|
xrlelttrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < ( y / 2 ) ) |
488 |
|
rphalflt |
|- ( y e. RR+ -> ( y / 2 ) < y ) |
489 |
488
|
adantl |
|- ( ( u e. ( A [,] B ) /\ y e. RR+ ) -> ( y / 2 ) < y ) |
490 |
489
|
ad3antlr |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( y / 2 ) < y ) |
491 |
430 434 436 487 490
|
lttrd |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) |
492 |
491
|
a1d |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) /\ w e. ( A [,] B ) ) -> ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
493 |
492
|
ralrimiva |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) -> A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
494 |
493
|
ralrimivw |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) -> A. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
495 |
|
r19.2z |
|- ( ( RR+ =/= (/) /\ A. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
496 |
426 494 495
|
sylancr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( S.2 ` ( t e. RR |-> if ( t e. D , ( abs ` ( F ` t ) ) , 0 ) ) ) < ( y / 2 ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
497 |
424 496
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
498 |
497
|
anassrs |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) /\ A. r e. ( ran f u. ran g ) r = 0 ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
499 |
498
|
anassrs |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ A. r e. ( ran f u. ran g ) r = 0 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
500 |
376 499
|
sylan2b |
|- ( ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ -. E. r e. ( ran f u. ran g ) r =/= 0 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
501 |
372 500
|
pm2.61dan |
|- ( ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
502 |
501
|
ex |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) |
503 |
502
|
rexlimdvva |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> ( E. f e. dom S.1 E. g e. dom S.1 ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) |
504 |
14 503
|
mpd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ y e. RR+ ) ) -> E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
505 |
504
|
ralrimivva |
|- ( ph -> A. u e. ( A [,] B ) A. y e. RR+ E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) |
506 |
|
ssid |
|- CC C_ CC |
507 |
|
elcncf2 |
|- ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> ( G : ( A [,] B ) --> CC /\ A. u e. ( A [,] B ) A. y e. RR+ E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) ) |
508 |
118 506 507
|
sylancl |
|- ( ph -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> ( G : ( A [,] B ) --> CC /\ A. u e. ( A [,] B ) A. y e. RR+ E. z e. RR+ A. w e. ( A [,] B ) ( ( abs ` ( w - u ) ) < z -> ( abs ` ( ( G ` w ) - ( G ` u ) ) ) < y ) ) ) ) |
509 |
10 505 508
|
mpbir2and |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |