Step |
Hyp |
Ref |
Expression |
1 |
|
ftc2nc.a |
|- ( ph -> A e. RR ) |
2 |
|
ftc2nc.b |
|- ( ph -> B e. RR ) |
3 |
|
ftc2nc.le |
|- ( ph -> A <_ B ) |
4 |
|
ftc2nc.c |
|- ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) |
5 |
|
ftc2nc.i |
|- ( ph -> ( RR _D F ) e. L^1 ) |
6 |
|
ftc2nc.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
7 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
8 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
9 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
10 |
7 8 3 9
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
11 |
|
fvex |
|- ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) e. _V |
12 |
11
|
fvconst2 |
|- ( B e. ( A [,] B ) -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) |
13 |
10 12
|
syl |
|- ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) ) |
14 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
15 |
14
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
16 |
15
|
a1i |
|- ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
17 |
|
eqid |
|- ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) |
18 |
|
ssidd |
|- ( ph -> ( A (,) B ) C_ ( A (,) B ) ) |
19 |
|
ioossre |
|- ( A (,) B ) C_ RR |
20 |
19
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
21 |
|
cncff |
|- ( ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
22 |
4 21
|
syl |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
23 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
24 |
|
ffun |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
25 |
23 24
|
ax-mp |
|- Fun (,) |
26 |
|
fvelima |
|- ( ( Fun (,) /\ s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ) -> E. x e. ( ( A [,] B ) X. ( A [,] B ) ) ( (,) ` x ) = s ) |
27 |
25 26
|
mpan |
|- ( s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) -> E. x e. ( ( A [,] B ) X. ( A [,] B ) ) ( (,) ` x ) = s ) |
28 |
|
1st2nd2 |
|- ( x e. ( ( A [,] B ) X. ( A [,] B ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
29 |
28
|
fveq2d |
|- ( x e. ( ( A [,] B ) X. ( A [,] B ) ) -> ( (,) ` x ) = ( (,) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
30 |
|
df-ov |
|- ( ( 1st ` x ) (,) ( 2nd ` x ) ) = ( (,) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
31 |
29 30
|
eqtr4di |
|- ( x e. ( ( A [,] B ) X. ( A [,] B ) ) -> ( (,) ` x ) = ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) |
32 |
31
|
eqeq1d |
|- ( x e. ( ( A [,] B ) X. ( A [,] B ) ) -> ( ( (,) ` x ) = s <-> ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s ) ) |
33 |
32
|
adantl |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( (,) ` x ) = s <-> ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s ) ) |
34 |
7 8
|
jca |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( A e. RR* /\ B e. RR* ) ) |
36 |
|
xp1st |
|- ( x e. ( ( A [,] B ) X. ( A [,] B ) ) -> ( 1st ` x ) e. ( A [,] B ) ) |
37 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( 1st ` x ) e. ( A [,] B ) <-> ( ( 1st ` x ) e. RR* /\ A <_ ( 1st ` x ) /\ ( 1st ` x ) <_ B ) ) ) |
38 |
7 8 37
|
syl2anc |
|- ( ph -> ( ( 1st ` x ) e. ( A [,] B ) <-> ( ( 1st ` x ) e. RR* /\ A <_ ( 1st ` x ) /\ ( 1st ` x ) <_ B ) ) ) |
39 |
38
|
biimpa |
|- ( ( ph /\ ( 1st ` x ) e. ( A [,] B ) ) -> ( ( 1st ` x ) e. RR* /\ A <_ ( 1st ` x ) /\ ( 1st ` x ) <_ B ) ) |
40 |
39
|
simp2d |
|- ( ( ph /\ ( 1st ` x ) e. ( A [,] B ) ) -> A <_ ( 1st ` x ) ) |
41 |
36 40
|
sylan2 |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> A <_ ( 1st ` x ) ) |
42 |
|
xp2nd |
|- ( x e. ( ( A [,] B ) X. ( A [,] B ) ) -> ( 2nd ` x ) e. ( A [,] B ) ) |
43 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( 2nd ` x ) e. ( A [,] B ) ) -> ( 2nd ` x ) <_ B ) |
44 |
43
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 2nd ` x ) e. ( A [,] B ) ) -> ( 2nd ` x ) <_ B ) |
45 |
34 42 44
|
syl2an |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( 2nd ` x ) <_ B ) |
46 |
|
ioossioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ ( 1st ` x ) /\ ( 2nd ` x ) <_ B ) ) -> ( ( 1st ` x ) (,) ( 2nd ` x ) ) C_ ( A (,) B ) ) |
47 |
35 41 45 46
|
syl12anc |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( 1st ` x ) (,) ( 2nd ` x ) ) C_ ( A (,) B ) ) |
48 |
47
|
sselda |
|- ( ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) /\ t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) -> t e. ( A (,) B ) ) |
49 |
22
|
ffvelrnda |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. CC ) |
50 |
49
|
adantlr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. CC ) |
51 |
48 50
|
syldan |
|- ( ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) /\ t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) -> ( ( RR _D F ) ` t ) e. CC ) |
52 |
|
ioombl |
|- ( ( 1st ` x ) (,) ( 2nd ` x ) ) e. dom vol |
53 |
52
|
a1i |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( 1st ` x ) (,) ( 2nd ` x ) ) e. dom vol ) |
54 |
|
fvexd |
|- ( ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
55 |
22
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) ) |
56 |
55 5
|
eqeltrrd |
|- ( ph -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
57 |
56
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
58 |
47 53 54 57
|
iblss |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
59 |
|
ax-resscn |
|- RR C_ CC |
60 |
|
ssid |
|- CC C_ CC |
61 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( CC -cn-> RR ) C_ ( CC -cn-> CC ) ) |
62 |
59 60 61
|
mp2an |
|- ( CC -cn-> RR ) C_ ( CC -cn-> CC ) |
63 |
|
abscncf |
|- abs e. ( CC -cn-> RR ) |
64 |
62 63
|
sselii |
|- abs e. ( CC -cn-> CC ) |
65 |
64
|
a1i |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> abs e. ( CC -cn-> CC ) ) |
66 |
55
|
reseq1d |
|- ( ph -> ( ( RR _D F ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) = ( ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( RR _D F ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) = ( ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) ) |
68 |
47
|
resmptd |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) = ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( RR _D F ) ` t ) ) ) |
69 |
67 68
|
eqtrd |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( RR _D F ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) = ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( RR _D F ) ` t ) ) ) |
70 |
4
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) |
71 |
|
rescncf |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) C_ ( A (,) B ) -> ( ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) ) |
72 |
47 70 71
|
sylc |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( RR _D F ) |` ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
73 |
69 72
|
eqeltrrd |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( RR _D F ) ` t ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
74 |
65 73
|
cncfmpt1f |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( abs ` ( ( RR _D F ) ` t ) ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
75 |
|
cnmbf |
|- ( ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) e. dom vol /\ ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( abs ` ( ( RR _D F ) ` t ) ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) -> ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( abs ` ( ( RR _D F ) ` t ) ) ) e. MblFn ) |
76 |
52 74 75
|
sylancr |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( abs ` ( ( RR _D F ) ` t ) ) ) e. MblFn ) |
77 |
51 58
|
itgcl |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t e. CC ) |
78 |
77
|
cjcld |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) e. CC ) |
79 |
|
ioossre |
|- ( ( 1st ` x ) (,) ( 2nd ` x ) ) C_ RR |
80 |
79 59
|
sstri |
|- ( ( 1st ` x ) (,) ( 2nd ` x ) ) C_ CC |
81 |
|
cncfmptc |
|- ( ( ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) e. CC /\ ( ( 1st ` x ) (,) ( 2nd ` x ) ) C_ CC /\ CC C_ CC ) -> ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
82 |
80 60 81
|
mp3an23 |
|- ( ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) e. CC -> ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
83 |
78 82
|
syl |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
84 |
|
nfcv |
|- F/_ s ( ( RR _D F ) ` t ) |
85 |
|
nfcsb1v |
|- F/_ t [_ s / t ]_ ( ( RR _D F ) ` t ) |
86 |
|
csbeq1a |
|- ( t = s -> ( ( RR _D F ) ` t ) = [_ s / t ]_ ( ( RR _D F ) ` t ) ) |
87 |
84 85 86
|
cbvmpt |
|- ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( RR _D F ) ` t ) ) = ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> [_ s / t ]_ ( ( RR _D F ) ` t ) ) |
88 |
87 73
|
eqeltrrid |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> [_ s / t ]_ ( ( RR _D F ) ` t ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
89 |
83 88
|
mulcncf |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) x. [_ s / t ]_ ( ( RR _D F ) ` t ) ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) |
90 |
|
cnmbf |
|- ( ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) e. dom vol /\ ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) x. [_ s / t ]_ ( ( RR _D F ) ` t ) ) ) e. ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) -cn-> CC ) ) -> ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) x. [_ s / t ]_ ( ( RR _D F ) ` t ) ) ) e. MblFn ) |
91 |
52 89 90
|
sylancr |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( s e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( ( * ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) x. [_ s / t ]_ ( ( RR _D F ) ` t ) ) ) e. MblFn ) |
92 |
51 58 76 91
|
itgabsnc |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( abs ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) <_ S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( abs ` ( ( RR _D F ) ` t ) ) _d t ) |
93 |
51
|
abscld |
|- ( ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) /\ t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) e. RR ) |
94 |
|
fvexd |
|- ( ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) /\ t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
95 |
94 58 76
|
iblabsnc |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) |-> ( abs ` ( ( RR _D F ) ` t ) ) ) e. L^1 ) |
96 |
51
|
absge0d |
|- ( ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) /\ t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ) -> 0 <_ ( abs ` ( ( RR _D F ) ` t ) ) ) |
97 |
93 95 96
|
itgposval |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( abs ` ( ( RR _D F ) ` t ) ) _d t = ( S.2 ` ( t e. RR |-> if ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) |
98 |
92 97
|
breqtrd |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( abs ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) |
99 |
|
itgeq1 |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t = S. s ( ( RR _D F ) ` t ) _d t ) |
100 |
99
|
fveq2d |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> ( abs ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) = ( abs ` S. s ( ( RR _D F ) ` t ) _d t ) ) |
101 |
|
eleq2 |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) <-> t e. s ) ) |
102 |
101
|
ifbid |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> if ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) = if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) |
103 |
102
|
mpteq2dv |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> ( t e. RR |-> if ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) = ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) |
104 |
103
|
fveq2d |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> ( S.2 ` ( t e. RR |-> if ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) = ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) |
105 |
100 104
|
breq12d |
|- ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> ( ( abs ` S. ( ( 1st ` x ) (,) ( 2nd ` x ) ) ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( ( 1st ` x ) (,) ( 2nd ` x ) ) , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) <-> ( abs ` S. s ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) ) |
106 |
98 105
|
syl5ibcom |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( ( 1st ` x ) (,) ( 2nd ` x ) ) = s -> ( abs ` S. s ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) ) |
107 |
33 106
|
sylbid |
|- ( ( ph /\ x e. ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( ( (,) ` x ) = s -> ( abs ` S. s ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) ) |
108 |
107
|
rexlimdva |
|- ( ph -> ( E. x e. ( ( A [,] B ) X. ( A [,] B ) ) ( (,) ` x ) = s -> ( abs ` S. s ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) ) |
109 |
27 108
|
syl5 |
|- ( ph -> ( s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) -> ( abs ` S. s ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) ) |
110 |
109
|
ralrimiv |
|- ( ph -> A. s e. ( (,) " ( ( A [,] B ) X. ( A [,] B ) ) ) ( abs ` S. s ( ( RR _D F ) ` t ) _d t ) <_ ( S.2 ` ( t e. RR |-> if ( t e. s , ( abs ` ( ( RR _D F ) ` t ) ) , 0 ) ) ) ) |
111 |
17 1 2 3 18 20 5 22 110
|
ftc1anc |
|- ( ph -> ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) e. ( ( A [,] B ) -cn-> CC ) ) |
112 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
113 |
6 112
|
syl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
114 |
113
|
feqmptd |
|- ( ph -> F = ( x e. ( A [,] B ) |-> ( F ` x ) ) ) |
115 |
114 6
|
eqeltrrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
116 |
14 16 111 115
|
cncfmpt2f |
|- ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
117 |
59
|
a1i |
|- ( ph -> RR C_ CC ) |
118 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
119 |
1 2 118
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
120 |
|
fvexd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) x ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
121 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
122 |
121
|
rexrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
123 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
124 |
1 2 123
|
syl2anc |
|- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
125 |
124
|
biimpa |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
126 |
125
|
simp3d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
127 |
|
iooss2 |
|- ( ( B e. RR* /\ x <_ B ) -> ( A (,) x ) C_ ( A (,) B ) ) |
128 |
122 126 127
|
syl2anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ ( A (,) B ) ) |
129 |
|
ioombl |
|- ( A (,) x ) e. dom vol |
130 |
129
|
a1i |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) e. dom vol ) |
131 |
|
fvexd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
132 |
56
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) B ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
133 |
128 130 131 132
|
iblss |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) x ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
134 |
120 133
|
itgcl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) |
135 |
113
|
ffvelrnda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
136 |
134 135
|
subcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) e. CC ) |
137 |
14
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
138 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
139 |
1 2 138
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
140 |
117 119 136 137 14 139
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) ) |
141 |
|
reelprrecn |
|- RR e. { RR , CC } |
142 |
141
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
143 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
144 |
143
|
sseli |
|- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
145 |
144 134
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t e. CC ) |
146 |
22
|
ffvelrnda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
147 |
17 1 2 3 4 5
|
ftc1cnnc |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D F ) ) |
148 |
117 119 134 137 14 139
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) ) |
149 |
22
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
150 |
147 148 149
|
3eqtr3d |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
151 |
144 135
|
sylan2 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
152 |
114
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) ) |
153 |
117 119 135 137 14 139
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( F ` x ) ) ) = ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) ) |
154 |
152 149 153
|
3eqtr3rd |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) ) |
155 |
142 145 146 150 151 146 154
|
dvmptsub |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) ) |
156 |
146
|
subidd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) = 0 ) |
157 |
156
|
mpteq2dva |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( ( RR _D F ) ` x ) - ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) |
158 |
140 155 157
|
3eqtrd |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( x e. ( A (,) B ) |-> 0 ) ) |
159 |
|
fconstmpt |
|- ( ( A (,) B ) X. { 0 } ) = ( x e. ( A (,) B ) |-> 0 ) |
160 |
158 159
|
eqtr4di |
|- ( ph -> ( RR _D ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ) = ( ( A (,) B ) X. { 0 } ) ) |
161 |
1 2 116 160
|
dveq0 |
|- ( ph -> ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ) |
162 |
161
|
fveq1d |
|- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) ) |
163 |
|
oveq2 |
|- ( x = B -> ( A (,) x ) = ( A (,) B ) ) |
164 |
|
itgeq1 |
|- ( ( A (,) x ) = ( A (,) B ) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
165 |
163 164
|
syl |
|- ( x = B -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
166 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
167 |
165 166
|
oveq12d |
|- ( x = B -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
168 |
|
eqid |
|- ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) = ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) |
169 |
|
ovex |
|- ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) e. _V |
170 |
167 168 169
|
fvmpt |
|- ( B e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
171 |
10 170
|
syl |
|- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
172 |
162 171
|
eqtr3d |
|- ( ph -> ( ( ( A [,] B ) X. { ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) } ) ` B ) = ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) |
173 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
174 |
7 8 3 173
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
175 |
|
oveq2 |
|- ( x = A -> ( A (,) x ) = ( A (,) A ) ) |
176 |
|
iooid |
|- ( A (,) A ) = (/) |
177 |
175 176
|
eqtrdi |
|- ( x = A -> ( A (,) x ) = (/) ) |
178 |
|
itgeq1 |
|- ( ( A (,) x ) = (/) -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) |
179 |
177 178
|
syl |
|- ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = S. (/) ( ( RR _D F ) ` t ) _d t ) |
180 |
|
itg0 |
|- S. (/) ( ( RR _D F ) ` t ) _d t = 0 |
181 |
179 180
|
eqtrdi |
|- ( x = A -> S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t = 0 ) |
182 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
183 |
181 182
|
oveq12d |
|- ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = ( 0 - ( F ` A ) ) ) |
184 |
|
df-neg |
|- -u ( F ` A ) = ( 0 - ( F ` A ) ) |
185 |
183 184
|
eqtr4di |
|- ( x = A -> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) = -u ( F ` A ) ) |
186 |
|
negex |
|- -u ( F ` A ) e. _V |
187 |
185 168 186
|
fvmpt |
|- ( A e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) |
188 |
174 187
|
syl |
|- ( ph -> ( ( x e. ( A [,] B ) |-> ( S. ( A (,) x ) ( ( RR _D F ) ` t ) _d t - ( F ` x ) ) ) ` A ) = -u ( F ` A ) ) |
189 |
13 172 188
|
3eqtr3d |
|- ( ph -> ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) = -u ( F ` A ) ) |
190 |
189
|
oveq2d |
|- ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = ( ( F ` B ) + -u ( F ` A ) ) ) |
191 |
113 10
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. CC ) |
192 |
|
fvexd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
193 |
192 56
|
itgcl |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t e. CC ) |
194 |
191 193
|
pncan3d |
|- ( ph -> ( ( F ` B ) + ( S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t - ( F ` B ) ) ) = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
195 |
113 174
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. CC ) |
196 |
191 195
|
negsubd |
|- ( ph -> ( ( F ` B ) + -u ( F ` A ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
197 |
190 194 196
|
3eqtr3d |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |