| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1cnnc.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
| 2 |
|
ftc1cnnc.a |
|- ( ph -> A e. RR ) |
| 3 |
|
ftc1cnnc.b |
|- ( ph -> B e. RR ) |
| 4 |
|
ftc1cnnc.le |
|- ( ph -> A <_ B ) |
| 5 |
|
ftc1cnnc.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 6 |
|
ftc1cnnc.i |
|- ( ph -> F e. L^1 ) |
| 7 |
|
dvf |
|- ( RR _D G ) : dom ( RR _D G ) --> CC |
| 8 |
7
|
a1i |
|- ( ph -> ( RR _D G ) : dom ( RR _D G ) --> CC ) |
| 9 |
8
|
ffund |
|- ( ph -> Fun ( RR _D G ) ) |
| 10 |
|
ax-resscn |
|- RR C_ CC |
| 11 |
10
|
a1i |
|- ( ph -> RR C_ CC ) |
| 12 |
|
ssidd |
|- ( ph -> ( A (,) B ) C_ ( A (,) B ) ) |
| 13 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 14 |
13
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 15 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
| 16 |
5 15
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
| 17 |
1 2 3 4 12 14 6 16
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
| 18 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 19 |
2 3 18
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 20 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 21 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 22 |
11 17 19 20 21
|
dvbssntr |
|- ( ph -> dom ( RR _D G ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 23 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 24 |
2 3 23
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 25 |
22 24
|
sseqtrd |
|- ( ph -> dom ( RR _D G ) C_ ( A (,) B ) ) |
| 26 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 27 |
20 26
|
eqeltrri |
|- ( ( TopOpen ` CCfld ) |`t RR ) e. Top |
| 28 |
27
|
a1i |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t RR ) e. Top ) |
| 29 |
19
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A [,] B ) C_ RR ) |
| 30 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 31 |
30 20
|
eleqtri |
|- ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 32 |
31
|
a1i |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 33 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 34 |
33
|
a1i |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A (,) B ) C_ ( A [,] B ) ) |
| 35 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 36 |
20
|
unieqi |
|- U. ( topGen ` ran (,) ) = U. ( ( TopOpen ` CCfld ) |`t RR ) |
| 37 |
35 36
|
eqtri |
|- RR = U. ( ( TopOpen ` CCfld ) |`t RR ) |
| 38 |
37
|
ssntr |
|- ( ( ( ( ( TopOpen ` CCfld ) |`t RR ) e. Top /\ ( A [,] B ) C_ RR ) /\ ( ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) /\ ( A (,) B ) C_ ( A [,] B ) ) ) -> ( A (,) B ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) ) |
| 39 |
28 29 32 34 38
|
syl22anc |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A (,) B ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) ) |
| 40 |
|
simpr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. ( A (,) B ) ) |
| 41 |
39 40
|
sseldd |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) ) |
| 42 |
16
|
ffvelcdmda |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( F ` c ) e. CC ) |
| 43 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 44 |
13 10
|
sstri |
|- ( A (,) B ) C_ CC |
| 45 |
|
xmetres2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) ) |
| 46 |
43 44 45
|
mp2an |
|- ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) |
| 47 |
46
|
a1i |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) ) |
| 48 |
43
|
a1i |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 49 |
|
ssid |
|- CC C_ CC |
| 50 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
| 51 |
21
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 52 |
51
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 53 |
21 50 52
|
cncfcn |
|- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 54 |
44 49 53
|
mp2an |
|- ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) |
| 55 |
5 54
|
eleqtrdi |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 56 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
| 57 |
51 44 56
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) |
| 58 |
57
|
toponunii |
|- ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
| 59 |
58
|
eleq2i |
|- ( c e. ( A (,) B ) <-> c e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
| 60 |
59
|
biimpi |
|- ( c e. ( A (,) B ) -> c e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
| 61 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
| 62 |
61
|
cncnpi |
|- ( ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) /\ c e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
| 63 |
55 60 62
|
syl2an |
|- ( ( ph /\ c e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
| 64 |
|
eqid |
|- ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) = ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) |
| 65 |
21
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 66 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) |
| 67 |
64 65 66
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) ) |
| 68 |
43 44 67
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) |
| 69 |
68
|
oveq1i |
|- ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) = ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) |
| 70 |
69
|
fveq1i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` c ) = ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) |
| 71 |
63 70
|
eleqtrdi |
|- ( ( ph /\ c e. ( A (,) B ) ) -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
| 73 |
|
simpr |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> w e. RR+ ) |
| 74 |
66 65
|
metcnpi2 |
|- ( ( ( ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) /\ ( abs o. - ) e. ( *Met ` CC ) ) /\ ( F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) /\ w e. RR+ ) ) -> E. v e. RR+ A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) ) |
| 75 |
47 48 72 73 74
|
syl22anc |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> E. v e. RR+ A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) ) |
| 76 |
|
simpr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> u e. ( A (,) B ) ) |
| 77 |
|
simpllr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> c e. ( A (,) B ) ) |
| 78 |
76 77
|
ovresd |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) = ( u ( abs o. - ) c ) ) |
| 79 |
|
elioore |
|- ( u e. ( A (,) B ) -> u e. RR ) |
| 80 |
79
|
recnd |
|- ( u e. ( A (,) B ) -> u e. CC ) |
| 81 |
44
|
sseli |
|- ( c e. ( A (,) B ) -> c e. CC ) |
| 82 |
81
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> c e. CC ) |
| 83 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 84 |
83
|
cnmetdval |
|- ( ( u e. CC /\ c e. CC ) -> ( u ( abs o. - ) c ) = ( abs ` ( u - c ) ) ) |
| 85 |
80 82 84
|
syl2an2 |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( u ( abs o. - ) c ) = ( abs ` ( u - c ) ) ) |
| 86 |
78 85
|
eqtrd |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) = ( abs ` ( u - c ) ) ) |
| 87 |
86
|
breq1d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v <-> ( abs ` ( u - c ) ) < v ) ) |
| 88 |
16
|
ad2antrr |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> F : ( A (,) B ) --> CC ) |
| 89 |
88
|
ffvelcdmda |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( F ` u ) e. CC ) |
| 90 |
42
|
ad2antrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( F ` c ) e. CC ) |
| 91 |
83
|
cnmetdval |
|- ( ( ( F ` u ) e. CC /\ ( F ` c ) e. CC ) -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) = ( abs ` ( ( F ` u ) - ( F ` c ) ) ) ) |
| 92 |
89 90 91
|
syl2anc |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) = ( abs ` ( ( F ` u ) - ( F ` c ) ) ) ) |
| 93 |
92
|
breq1d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w <-> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) |
| 94 |
87 93
|
imbi12d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) <-> ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) |
| 95 |
94
|
ralbidva |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) <-> A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) |
| 96 |
|
simprll |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z e. ( ( A [,] B ) \ { c } ) ) |
| 97 |
|
eldifsni |
|- ( z e. ( ( A [,] B ) \ { c } ) -> z =/= c ) |
| 98 |
96 97
|
syl |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z =/= c ) |
| 99 |
19
|
ssdifssd |
|- ( ph -> ( ( A [,] B ) \ { c } ) C_ RR ) |
| 100 |
99
|
sselda |
|- ( ( ph /\ z e. ( ( A [,] B ) \ { c } ) ) -> z e. RR ) |
| 101 |
100
|
ad2ant2r |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) -> z e. RR ) |
| 102 |
101
|
ad2ant2r |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z e. RR ) |
| 103 |
|
elioore |
|- ( c e. ( A (,) B ) -> c e. RR ) |
| 104 |
103
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> c e. RR ) |
| 105 |
102 104
|
lttri2d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( z =/= c <-> ( z < c \/ c < z ) ) ) |
| 106 |
105
|
biimpa |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z =/= c ) -> ( z < c \/ c < z ) ) |
| 107 |
|
fveq2 |
|- ( s = z -> ( G ` s ) = ( G ` z ) ) |
| 108 |
107
|
oveq1d |
|- ( s = z -> ( ( G ` s ) - ( G ` c ) ) = ( ( G ` z ) - ( G ` c ) ) ) |
| 109 |
|
oveq1 |
|- ( s = z -> ( s - c ) = ( z - c ) ) |
| 110 |
108 109
|
oveq12d |
|- ( s = z -> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
| 111 |
|
eqid |
|- ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) = ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) |
| 112 |
|
ovex |
|- ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) e. _V |
| 113 |
110 111 112
|
fvmpt |
|- ( z e. ( ( A [,] B ) \ { c } ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
| 114 |
113
|
ad2antrr |
|- ( ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
| 115 |
114
|
ad2antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
| 116 |
17
|
ad4antr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> G : ( A [,] B ) --> CC ) |
| 117 |
|
eldifi |
|- ( z e. ( ( A [,] B ) \ { c } ) -> z e. ( A [,] B ) ) |
| 118 |
117
|
ad2antrr |
|- ( ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) -> z e. ( A [,] B ) ) |
| 119 |
118
|
ad2antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z e. ( A [,] B ) ) |
| 120 |
116 119
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( G ` z ) e. CC ) |
| 121 |
33
|
sseli |
|- ( c e. ( A (,) B ) -> c e. ( A [,] B ) ) |
| 122 |
17
|
ffvelcdmda |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( G ` c ) e. CC ) |
| 123 |
121 122
|
sylan2 |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( G ` c ) e. CC ) |
| 124 |
123
|
ad3antrrr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( G ` c ) e. CC ) |
| 125 |
102
|
adantr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z e. RR ) |
| 126 |
125
|
recnd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z e. CC ) |
| 127 |
81
|
ad4antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> c e. CC ) |
| 128 |
|
ltne |
|- ( ( z e. RR /\ z < c ) -> c =/= z ) |
| 129 |
128
|
necomd |
|- ( ( z e. RR /\ z < c ) -> z =/= c ) |
| 130 |
102 129
|
sylan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z =/= c ) |
| 131 |
120 124 126 127 130
|
div2subd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) = ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) ) |
| 132 |
115 131
|
eqtrd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) ) |
| 133 |
132
|
fvoveq1d |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) - ( F ` c ) ) ) ) |
| 134 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> A e. RR ) |
| 135 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> B e. RR ) |
| 136 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> A <_ B ) |
| 137 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 138 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> F e. L^1 ) |
| 139 |
|
simpllr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> c e. ( A (,) B ) ) |
| 140 |
|
simplrl |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> w e. RR+ ) |
| 141 |
|
simplrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> v e. RR+ ) |
| 142 |
|
simprlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) |
| 143 |
|
fvoveq1 |
|- ( u = y -> ( abs ` ( u - c ) ) = ( abs ` ( y - c ) ) ) |
| 144 |
143
|
breq1d |
|- ( u = y -> ( ( abs ` ( u - c ) ) < v <-> ( abs ` ( y - c ) ) < v ) ) |
| 145 |
144
|
imbrov2fvoveq |
|- ( u = y -> ( ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) <-> ( ( abs ` ( y - c ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` c ) ) ) < w ) ) ) |
| 146 |
145
|
rspccva |
|- ( ( A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) /\ y e. ( A (,) B ) ) -> ( ( abs ` ( y - c ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` c ) ) ) < w ) ) |
| 147 |
142 146
|
sylan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ y e. ( A (,) B ) ) -> ( ( abs ` ( y - c ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` c ) ) ) < w ) ) |
| 148 |
96 117
|
syl |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z e. ( A [,] B ) ) |
| 149 |
|
simprr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( z - c ) ) < v ) |
| 150 |
121
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> c e. ( A [,] B ) ) |
| 151 |
103
|
recnd |
|- ( c e. ( A (,) B ) -> c e. CC ) |
| 152 |
151
|
subidd |
|- ( c e. ( A (,) B ) -> ( c - c ) = 0 ) |
| 153 |
152
|
abs00bd |
|- ( c e. ( A (,) B ) -> ( abs ` ( c - c ) ) = 0 ) |
| 154 |
153
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( c - c ) ) = 0 ) |
| 155 |
141
|
rpgt0d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> 0 < v ) |
| 156 |
154 155
|
eqbrtrd |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( c - c ) ) < v ) |
| 157 |
1 134 135 136 137 138 139 111 140 141 147 148 149 150 156
|
ftc1cnnclem |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( abs ` ( ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) - ( F ` c ) ) ) < w ) |
| 158 |
133 157
|
eqbrtrd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
| 159 |
113
|
fvoveq1d |
|- ( z e. ( ( A [,] B ) \ { c } ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) ) |
| 160 |
159
|
ad2antrr |
|- ( ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) ) |
| 161 |
160
|
ad2antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ c < z ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) ) |
| 162 |
1 134 135 136 137 138 139 111 140 141 147 150 156 148 149
|
ftc1cnnclem |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ c < z ) -> ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) < w ) |
| 163 |
161 162
|
eqbrtrd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ c < z ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
| 164 |
158 163
|
jaodan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ ( z < c \/ c < z ) ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
| 165 |
106 164
|
syldan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z =/= c ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
| 166 |
98 165
|
mpdan |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
| 167 |
166
|
expr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) -> ( ( abs ` ( z - c ) ) < v -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
| 168 |
167
|
adantld |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) -> ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
| 169 |
168
|
expr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ z e. ( ( A [,] B ) \ { c } ) ) -> ( A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) -> ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
| 170 |
169
|
ralrimdva |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) -> A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
| 171 |
95 170
|
sylbid |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) -> A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
| 172 |
171
|
anassrs |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) /\ v e. RR+ ) -> ( A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) -> A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
| 173 |
172
|
reximdva |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> ( E. v e. RR+ A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) -> E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
| 174 |
75 173
|
mpd |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
| 175 |
174
|
ralrimiva |
|- ( ( ph /\ c e. ( A (,) B ) ) -> A. w e. RR+ E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
| 176 |
17
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> G : ( A [,] B ) --> CC ) |
| 177 |
19 10
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 178 |
177
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A [,] B ) C_ CC ) |
| 179 |
121
|
adantl |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. ( A [,] B ) ) |
| 180 |
176 178 179
|
dvlem |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ s e. ( ( A [,] B ) \ { c } ) ) -> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) e. CC ) |
| 181 |
180
|
fmpttd |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) : ( ( A [,] B ) \ { c } ) --> CC ) |
| 182 |
177
|
ssdifssd |
|- ( ph -> ( ( A [,] B ) \ { c } ) C_ CC ) |
| 183 |
182
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( A [,] B ) \ { c } ) C_ CC ) |
| 184 |
81
|
adantl |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. CC ) |
| 185 |
181 183 184
|
ellimc3 |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) <-> ( ( F ` c ) e. CC /\ A. w e. RR+ E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) ) |
| 186 |
42 175 185
|
mpbir2and |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) ) |
| 187 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 188 |
187 21 111 11 17 19
|
eldv |
|- ( ph -> ( c ( RR _D G ) ( F ` c ) <-> ( c e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) /\ ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) ) ) ) |
| 189 |
188
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( c ( RR _D G ) ( F ` c ) <-> ( c e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) /\ ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) ) ) ) |
| 190 |
41 186 189
|
mpbir2and |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c ( RR _D G ) ( F ` c ) ) |
| 191 |
|
vex |
|- c e. _V |
| 192 |
|
fvex |
|- ( F ` c ) e. _V |
| 193 |
191 192
|
breldm |
|- ( c ( RR _D G ) ( F ` c ) -> c e. dom ( RR _D G ) ) |
| 194 |
190 193
|
syl |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. dom ( RR _D G ) ) |
| 195 |
25 194
|
eqelssd |
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
| 196 |
|
df-fn |
|- ( ( RR _D G ) Fn ( A (,) B ) <-> ( Fun ( RR _D G ) /\ dom ( RR _D G ) = ( A (,) B ) ) ) |
| 197 |
9 195 196
|
sylanbrc |
|- ( ph -> ( RR _D G ) Fn ( A (,) B ) ) |
| 198 |
16
|
ffnd |
|- ( ph -> F Fn ( A (,) B ) ) |
| 199 |
9
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> Fun ( RR _D G ) ) |
| 200 |
|
funbrfv |
|- ( Fun ( RR _D G ) -> ( c ( RR _D G ) ( F ` c ) -> ( ( RR _D G ) ` c ) = ( F ` c ) ) ) |
| 201 |
199 190 200
|
sylc |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( RR _D G ) ` c ) = ( F ` c ) ) |
| 202 |
197 198 201
|
eqfnfvd |
|- ( ph -> ( RR _D G ) = F ) |