Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1cnnc.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
2 |
|
ftc1cnnc.a |
|- ( ph -> A e. RR ) |
3 |
|
ftc1cnnc.b |
|- ( ph -> B e. RR ) |
4 |
|
ftc1cnnc.le |
|- ( ph -> A <_ B ) |
5 |
|
ftc1cnnc.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
6 |
|
ftc1cnnc.i |
|- ( ph -> F e. L^1 ) |
7 |
|
dvf |
|- ( RR _D G ) : dom ( RR _D G ) --> CC |
8 |
7
|
a1i |
|- ( ph -> ( RR _D G ) : dom ( RR _D G ) --> CC ) |
9 |
8
|
ffund |
|- ( ph -> Fun ( RR _D G ) ) |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
10
|
a1i |
|- ( ph -> RR C_ CC ) |
12 |
|
ssidd |
|- ( ph -> ( A (,) B ) C_ ( A (,) B ) ) |
13 |
|
ioossre |
|- ( A (,) B ) C_ RR |
14 |
13
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
15 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
16 |
5 15
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
17 |
1 2 3 4 12 14 6 16
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
18 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
19 |
2 3 18
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
20 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
21 |
20
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
22 |
11 17 19 21 20
|
dvbssntr |
|- ( ph -> dom ( RR _D G ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
23 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
24 |
2 3 23
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
25 |
22 24
|
sseqtrd |
|- ( ph -> dom ( RR _D G ) C_ ( A (,) B ) ) |
26 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
27 |
21 26
|
eqeltrri |
|- ( ( TopOpen ` CCfld ) |`t RR ) e. Top |
28 |
27
|
a1i |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t RR ) e. Top ) |
29 |
19
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A [,] B ) C_ RR ) |
30 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
31 |
30 21
|
eleqtri |
|- ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
32 |
31
|
a1i |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
33 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
34 |
33
|
a1i |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A (,) B ) C_ ( A [,] B ) ) |
35 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
36 |
21
|
unieqi |
|- U. ( topGen ` ran (,) ) = U. ( ( TopOpen ` CCfld ) |`t RR ) |
37 |
35 36
|
eqtri |
|- RR = U. ( ( TopOpen ` CCfld ) |`t RR ) |
38 |
37
|
ssntr |
|- ( ( ( ( ( TopOpen ` CCfld ) |`t RR ) e. Top /\ ( A [,] B ) C_ RR ) /\ ( ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) /\ ( A (,) B ) C_ ( A [,] B ) ) ) -> ( A (,) B ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) ) |
39 |
28 29 32 34 38
|
syl22anc |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A (,) B ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) ) |
40 |
|
simpr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. ( A (,) B ) ) |
41 |
39 40
|
sseldd |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) ) |
42 |
16
|
ffvelrnda |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( F ` c ) e. CC ) |
43 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
44 |
13 10
|
sstri |
|- ( A (,) B ) C_ CC |
45 |
|
xmetres2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) ) |
46 |
43 44 45
|
mp2an |
|- ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) |
47 |
46
|
a1i |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) ) |
48 |
43
|
a1i |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
49 |
|
ssid |
|- CC C_ CC |
50 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
51 |
20
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
52 |
51
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
53 |
20 50 52
|
cncfcn |
|- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
54 |
44 49 53
|
mp2an |
|- ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) |
55 |
5 54
|
eleqtrdi |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
56 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
57 |
51 44 56
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) |
58 |
57
|
toponunii |
|- ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
59 |
58
|
eleq2i |
|- ( c e. ( A (,) B ) <-> c e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
60 |
59
|
biimpi |
|- ( c e. ( A (,) B ) -> c e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
61 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
62 |
61
|
cncnpi |
|- ( ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) /\ c e. U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
63 |
55 60 62
|
syl2an |
|- ( ( ph /\ c e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
64 |
|
eqid |
|- ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) = ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) |
65 |
20
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
66 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) |
67 |
64 65 66
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) ) |
68 |
43 44 67
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) |
69 |
68
|
oveq1i |
|- ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) = ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) |
70 |
69
|
fveq1i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` c ) = ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) |
71 |
63 70
|
eleqtrdi |
|- ( ( ph /\ c e. ( A (,) B ) ) -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
72 |
71
|
adantr |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) ) |
73 |
|
simpr |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> w e. RR+ ) |
74 |
66 65
|
metcnpi2 |
|- ( ( ( ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) e. ( *Met ` ( A (,) B ) ) /\ ( abs o. - ) e. ( *Met ` CC ) ) /\ ( F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) ) CnP ( TopOpen ` CCfld ) ) ` c ) /\ w e. RR+ ) ) -> E. v e. RR+ A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) ) |
75 |
47 48 72 73 74
|
syl22anc |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> E. v e. RR+ A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) ) |
76 |
|
simpr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> u e. ( A (,) B ) ) |
77 |
|
simpllr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> c e. ( A (,) B ) ) |
78 |
76 77
|
ovresd |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) = ( u ( abs o. - ) c ) ) |
79 |
|
elioore |
|- ( u e. ( A (,) B ) -> u e. RR ) |
80 |
79
|
recnd |
|- ( u e. ( A (,) B ) -> u e. CC ) |
81 |
44
|
sseli |
|- ( c e. ( A (,) B ) -> c e. CC ) |
82 |
81
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> c e. CC ) |
83 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
84 |
83
|
cnmetdval |
|- ( ( u e. CC /\ c e. CC ) -> ( u ( abs o. - ) c ) = ( abs ` ( u - c ) ) ) |
85 |
80 82 84
|
syl2an2 |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( u ( abs o. - ) c ) = ( abs ` ( u - c ) ) ) |
86 |
78 85
|
eqtrd |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) = ( abs ` ( u - c ) ) ) |
87 |
86
|
breq1d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v <-> ( abs ` ( u - c ) ) < v ) ) |
88 |
16
|
ad2antrr |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> F : ( A (,) B ) --> CC ) |
89 |
88
|
ffvelrnda |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( F ` u ) e. CC ) |
90 |
42
|
ad2antrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( F ` c ) e. CC ) |
91 |
83
|
cnmetdval |
|- ( ( ( F ` u ) e. CC /\ ( F ` c ) e. CC ) -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) = ( abs ` ( ( F ` u ) - ( F ` c ) ) ) ) |
92 |
89 90 91
|
syl2anc |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) = ( abs ` ( ( F ` u ) - ( F ` c ) ) ) ) |
93 |
92
|
breq1d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w <-> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) |
94 |
87 93
|
imbi12d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ u e. ( A (,) B ) ) -> ( ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) <-> ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) |
95 |
94
|
ralbidva |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) <-> A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) |
96 |
|
simprll |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z e. ( ( A [,] B ) \ { c } ) ) |
97 |
|
eldifsni |
|- ( z e. ( ( A [,] B ) \ { c } ) -> z =/= c ) |
98 |
96 97
|
syl |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z =/= c ) |
99 |
19
|
ssdifssd |
|- ( ph -> ( ( A [,] B ) \ { c } ) C_ RR ) |
100 |
99
|
sselda |
|- ( ( ph /\ z e. ( ( A [,] B ) \ { c } ) ) -> z e. RR ) |
101 |
100
|
ad2ant2r |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) -> z e. RR ) |
102 |
101
|
ad2ant2r |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z e. RR ) |
103 |
|
elioore |
|- ( c e. ( A (,) B ) -> c e. RR ) |
104 |
103
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> c e. RR ) |
105 |
102 104
|
lttri2d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( z =/= c <-> ( z < c \/ c < z ) ) ) |
106 |
105
|
biimpa |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z =/= c ) -> ( z < c \/ c < z ) ) |
107 |
|
fveq2 |
|- ( s = z -> ( G ` s ) = ( G ` z ) ) |
108 |
107
|
oveq1d |
|- ( s = z -> ( ( G ` s ) - ( G ` c ) ) = ( ( G ` z ) - ( G ` c ) ) ) |
109 |
|
oveq1 |
|- ( s = z -> ( s - c ) = ( z - c ) ) |
110 |
108 109
|
oveq12d |
|- ( s = z -> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
111 |
|
eqid |
|- ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) = ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) |
112 |
|
ovex |
|- ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) e. _V |
113 |
110 111 112
|
fvmpt |
|- ( z e. ( ( A [,] B ) \ { c } ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
114 |
113
|
ad2antrr |
|- ( ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
115 |
114
|
ad2antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) ) |
116 |
17
|
ad4antr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> G : ( A [,] B ) --> CC ) |
117 |
|
eldifi |
|- ( z e. ( ( A [,] B ) \ { c } ) -> z e. ( A [,] B ) ) |
118 |
117
|
ad2antrr |
|- ( ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) -> z e. ( A [,] B ) ) |
119 |
118
|
ad2antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z e. ( A [,] B ) ) |
120 |
116 119
|
ffvelrnd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( G ` z ) e. CC ) |
121 |
33
|
sseli |
|- ( c e. ( A (,) B ) -> c e. ( A [,] B ) ) |
122 |
17
|
ffvelrnda |
|- ( ( ph /\ c e. ( A [,] B ) ) -> ( G ` c ) e. CC ) |
123 |
121 122
|
sylan2 |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( G ` c ) e. CC ) |
124 |
123
|
ad3antrrr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( G ` c ) e. CC ) |
125 |
102
|
adantr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z e. RR ) |
126 |
125
|
recnd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z e. CC ) |
127 |
81
|
ad4antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> c e. CC ) |
128 |
|
ltne |
|- ( ( z e. RR /\ z < c ) -> c =/= z ) |
129 |
128
|
necomd |
|- ( ( z e. RR /\ z < c ) -> z =/= c ) |
130 |
102 129
|
sylan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> z =/= c ) |
131 |
120 124 126 127 130
|
div2subd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) = ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) ) |
132 |
115 131
|
eqtrd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) = ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) ) |
133 |
132
|
fvoveq1d |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) - ( F ` c ) ) ) ) |
134 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> A e. RR ) |
135 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> B e. RR ) |
136 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> A <_ B ) |
137 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
138 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> F e. L^1 ) |
139 |
|
simpllr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> c e. ( A (,) B ) ) |
140 |
|
simplrl |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> w e. RR+ ) |
141 |
|
simplrr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> v e. RR+ ) |
142 |
|
simprlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) |
143 |
|
fvoveq1 |
|- ( u = y -> ( abs ` ( u - c ) ) = ( abs ` ( y - c ) ) ) |
144 |
143
|
breq1d |
|- ( u = y -> ( ( abs ` ( u - c ) ) < v <-> ( abs ` ( y - c ) ) < v ) ) |
145 |
144
|
imbrov2fvoveq |
|- ( u = y -> ( ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) <-> ( ( abs ` ( y - c ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` c ) ) ) < w ) ) ) |
146 |
145
|
rspccva |
|- ( ( A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) /\ y e. ( A (,) B ) ) -> ( ( abs ` ( y - c ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` c ) ) ) < w ) ) |
147 |
142 146
|
sylan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ y e. ( A (,) B ) ) -> ( ( abs ` ( y - c ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` c ) ) ) < w ) ) |
148 |
96 117
|
syl |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> z e. ( A [,] B ) ) |
149 |
|
simprr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( z - c ) ) < v ) |
150 |
121
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> c e. ( A [,] B ) ) |
151 |
103
|
recnd |
|- ( c e. ( A (,) B ) -> c e. CC ) |
152 |
151
|
subidd |
|- ( c e. ( A (,) B ) -> ( c - c ) = 0 ) |
153 |
152
|
abs00bd |
|- ( c e. ( A (,) B ) -> ( abs ` ( c - c ) ) = 0 ) |
154 |
153
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( c - c ) ) = 0 ) |
155 |
141
|
rpgt0d |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> 0 < v ) |
156 |
154 155
|
eqbrtrd |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( c - c ) ) < v ) |
157 |
1 134 135 136 137 138 139 111 140 141 147 148 149 150 156
|
ftc1cnnclem |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( abs ` ( ( ( ( G ` c ) - ( G ` z ) ) / ( c - z ) ) - ( F ` c ) ) ) < w ) |
158 |
133 157
|
eqbrtrd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z < c ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
159 |
113
|
fvoveq1d |
|- ( z e. ( ( A [,] B ) \ { c } ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) ) |
160 |
159
|
ad2antrr |
|- ( ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) ) |
161 |
160
|
ad2antlr |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ c < z ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) = ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) ) |
162 |
1 134 135 136 137 138 139 111 140 141 147 150 156 148 149
|
ftc1cnnclem |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ c < z ) -> ( abs ` ( ( ( ( G ` z ) - ( G ` c ) ) / ( z - c ) ) - ( F ` c ) ) ) < w ) |
163 |
161 162
|
eqbrtrd |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ c < z ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
164 |
158 163
|
jaodan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ ( z < c \/ c < z ) ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
165 |
106 164
|
syldan |
|- ( ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) /\ z =/= c ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
166 |
98 165
|
mpdan |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) /\ ( abs ` ( z - c ) ) < v ) ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) |
167 |
166
|
expr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) -> ( ( abs ` ( z - c ) ) < v -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
168 |
167
|
adantld |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( z e. ( ( A [,] B ) \ { c } ) /\ A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) ) ) -> ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
169 |
168
|
expr |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) /\ z e. ( ( A [,] B ) \ { c } ) ) -> ( A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) -> ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
170 |
169
|
ralrimdva |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. u e. ( A (,) B ) ( ( abs ` ( u - c ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` c ) ) ) < w ) -> A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
171 |
95 170
|
sylbid |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) -> A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
172 |
171
|
anassrs |
|- ( ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) /\ v e. RR+ ) -> ( A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) -> A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
173 |
172
|
reximdva |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> ( E. v e. RR+ A. u e. ( A (,) B ) ( ( u ( ( abs o. - ) |` ( ( A (,) B ) X. ( A (,) B ) ) ) c ) < v -> ( ( F ` u ) ( abs o. - ) ( F ` c ) ) < w ) -> E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) |
174 |
75 173
|
mpd |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ w e. RR+ ) -> E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
175 |
174
|
ralrimiva |
|- ( ( ph /\ c e. ( A (,) B ) ) -> A. w e. RR+ E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) |
176 |
17
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> G : ( A [,] B ) --> CC ) |
177 |
19 10
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
178 |
177
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( A [,] B ) C_ CC ) |
179 |
121
|
adantl |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. ( A [,] B ) ) |
180 |
176 178 179
|
dvlem |
|- ( ( ( ph /\ c e. ( A (,) B ) ) /\ s e. ( ( A [,] B ) \ { c } ) ) -> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) e. CC ) |
181 |
180
|
fmpttd |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) : ( ( A [,] B ) \ { c } ) --> CC ) |
182 |
177
|
ssdifssd |
|- ( ph -> ( ( A [,] B ) \ { c } ) C_ CC ) |
183 |
182
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( A [,] B ) \ { c } ) C_ CC ) |
184 |
81
|
adantl |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. CC ) |
185 |
181 183 184
|
ellimc3 |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) <-> ( ( F ` c ) e. CC /\ A. w e. RR+ E. v e. RR+ A. z e. ( ( A [,] B ) \ { c } ) ( ( z =/= c /\ ( abs ` ( z - c ) ) < v ) -> ( abs ` ( ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) ` z ) - ( F ` c ) ) ) < w ) ) ) ) |
186 |
42 175 185
|
mpbir2and |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) ) |
187 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t RR ) |
188 |
187 20 111 11 17 19
|
eldv |
|- ( ph -> ( c ( RR _D G ) ( F ` c ) <-> ( c e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) /\ ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) ) ) ) |
189 |
188
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( c ( RR _D G ) ( F ` c ) <-> ( c e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` ( A [,] B ) ) /\ ( F ` c ) e. ( ( s e. ( ( A [,] B ) \ { c } ) |-> ( ( ( G ` s ) - ( G ` c ) ) / ( s - c ) ) ) limCC c ) ) ) ) |
190 |
41 186 189
|
mpbir2and |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c ( RR _D G ) ( F ` c ) ) |
191 |
|
vex |
|- c e. _V |
192 |
|
fvex |
|- ( F ` c ) e. _V |
193 |
191 192
|
breldm |
|- ( c ( RR _D G ) ( F ` c ) -> c e. dom ( RR _D G ) ) |
194 |
190 193
|
syl |
|- ( ( ph /\ c e. ( A (,) B ) ) -> c e. dom ( RR _D G ) ) |
195 |
25 194
|
eqelssd |
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
196 |
|
df-fn |
|- ( ( RR _D G ) Fn ( A (,) B ) <-> ( Fun ( RR _D G ) /\ dom ( RR _D G ) = ( A (,) B ) ) ) |
197 |
9 195 196
|
sylanbrc |
|- ( ph -> ( RR _D G ) Fn ( A (,) B ) ) |
198 |
16
|
ffnd |
|- ( ph -> F Fn ( A (,) B ) ) |
199 |
9
|
adantr |
|- ( ( ph /\ c e. ( A (,) B ) ) -> Fun ( RR _D G ) ) |
200 |
|
funbrfv |
|- ( Fun ( RR _D G ) -> ( c ( RR _D G ) ( F ` c ) -> ( ( RR _D G ) ` c ) = ( F ` c ) ) ) |
201 |
199 190 200
|
sylc |
|- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( RR _D G ) ` c ) = ( F ` c ) ) |
202 |
197 198 201
|
eqfnfvd |
|- ( ph -> ( RR _D G ) = F ) |