| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc1cnnc.g |  | 
						
							| 2 |  | ftc1cnnc.a |  | 
						
							| 3 |  | ftc1cnnc.b |  | 
						
							| 4 |  | ftc1cnnc.le |  | 
						
							| 5 |  | ftc1cnnc.f |  | 
						
							| 6 |  | ftc1cnnc.i |  | 
						
							| 7 |  | dvf |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 | 8 | ffund |  | 
						
							| 10 |  | ax-resscn |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 |  | ssidd |  | 
						
							| 13 |  | ioossre |  | 
						
							| 14 | 13 | a1i |  | 
						
							| 15 |  | cncff |  | 
						
							| 16 | 5 15 | syl |  | 
						
							| 17 | 1 2 3 4 12 14 6 16 | ftc1lem2 |  | 
						
							| 18 |  | iccssre |  | 
						
							| 19 | 2 3 18 | syl2anc |  | 
						
							| 20 |  | tgioo4 |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 11 17 19 20 21 | dvbssntr |  | 
						
							| 23 |  | iccntr |  | 
						
							| 24 | 2 3 23 | syl2anc |  | 
						
							| 25 | 22 24 | sseqtrd |  | 
						
							| 26 |  | retop |  | 
						
							| 27 | 20 26 | eqeltrri |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 19 | adantr |  | 
						
							| 30 |  | iooretop |  | 
						
							| 31 | 30 20 | eleqtri |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 |  | ioossicc |  | 
						
							| 34 | 33 | a1i |  | 
						
							| 35 |  | uniretop |  | 
						
							| 36 | 20 | unieqi |  | 
						
							| 37 | 35 36 | eqtri |  | 
						
							| 38 | 37 | ssntr |  | 
						
							| 39 | 28 29 32 34 38 | syl22anc |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 39 40 | sseldd |  | 
						
							| 42 | 16 | ffvelcdmda |  | 
						
							| 43 |  | cnxmet |  | 
						
							| 44 | 13 10 | sstri |  | 
						
							| 45 |  | xmetres2 |  | 
						
							| 46 | 43 44 45 | mp2an |  | 
						
							| 47 | 46 | a1i |  | 
						
							| 48 | 43 | a1i |  | 
						
							| 49 |  | ssid |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 21 | cnfldtopon |  | 
						
							| 52 | 51 | toponrestid |  | 
						
							| 53 | 21 50 52 | cncfcn |  | 
						
							| 54 | 44 49 53 | mp2an |  | 
						
							| 55 | 5 54 | eleqtrdi |  | 
						
							| 56 |  | resttopon |  | 
						
							| 57 | 51 44 56 | mp2an |  | 
						
							| 58 | 57 | toponunii |  | 
						
							| 59 | 58 | eleq2i |  | 
						
							| 60 | 59 | biimpi |  | 
						
							| 61 |  | eqid |  | 
						
							| 62 | 61 | cncnpi |  | 
						
							| 63 | 55 60 62 | syl2an |  | 
						
							| 64 |  | eqid |  | 
						
							| 65 | 21 | cnfldtopn |  | 
						
							| 66 |  | eqid |  | 
						
							| 67 | 64 65 66 | metrest |  | 
						
							| 68 | 43 44 67 | mp2an |  | 
						
							| 69 | 68 | oveq1i |  | 
						
							| 70 | 69 | fveq1i |  | 
						
							| 71 | 63 70 | eleqtrdi |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 |  | simpr |  | 
						
							| 74 | 66 65 | metcnpi2 |  | 
						
							| 75 | 47 48 72 73 74 | syl22anc |  | 
						
							| 76 |  | simpr |  | 
						
							| 77 |  | simpllr |  | 
						
							| 78 | 76 77 | ovresd |  | 
						
							| 79 |  | elioore |  | 
						
							| 80 | 79 | recnd |  | 
						
							| 81 | 44 | sseli |  | 
						
							| 82 | 81 | ad3antlr |  | 
						
							| 83 |  | eqid |  | 
						
							| 84 | 83 | cnmetdval |  | 
						
							| 85 | 80 82 84 | syl2an2 |  | 
						
							| 86 | 78 85 | eqtrd |  | 
						
							| 87 | 86 | breq1d |  | 
						
							| 88 | 16 | ad2antrr |  | 
						
							| 89 | 88 | ffvelcdmda |  | 
						
							| 90 | 42 | ad2antrr |  | 
						
							| 91 | 83 | cnmetdval |  | 
						
							| 92 | 89 90 91 | syl2anc |  | 
						
							| 93 | 92 | breq1d |  | 
						
							| 94 | 87 93 | imbi12d |  | 
						
							| 95 | 94 | ralbidva |  | 
						
							| 96 |  | simprll |  | 
						
							| 97 |  | eldifsni |  | 
						
							| 98 | 96 97 | syl |  | 
						
							| 99 | 19 | ssdifssd |  | 
						
							| 100 | 99 | sselda |  | 
						
							| 101 | 100 | ad2ant2r |  | 
						
							| 102 | 101 | ad2ant2r |  | 
						
							| 103 |  | elioore |  | 
						
							| 104 | 103 | ad3antlr |  | 
						
							| 105 | 102 104 | lttri2d |  | 
						
							| 106 | 105 | biimpa |  | 
						
							| 107 |  | fveq2 |  | 
						
							| 108 | 107 | oveq1d |  | 
						
							| 109 |  | oveq1 |  | 
						
							| 110 | 108 109 | oveq12d |  | 
						
							| 111 |  | eqid |  | 
						
							| 112 |  | ovex |  | 
						
							| 113 | 110 111 112 | fvmpt |  | 
						
							| 114 | 113 | ad2antrr |  | 
						
							| 115 | 114 | ad2antlr |  | 
						
							| 116 | 17 | ad4antr |  | 
						
							| 117 |  | eldifi |  | 
						
							| 118 | 117 | ad2antrr |  | 
						
							| 119 | 118 | ad2antlr |  | 
						
							| 120 | 116 119 | ffvelcdmd |  | 
						
							| 121 | 33 | sseli |  | 
						
							| 122 | 17 | ffvelcdmda |  | 
						
							| 123 | 121 122 | sylan2 |  | 
						
							| 124 | 123 | ad3antrrr |  | 
						
							| 125 | 102 | adantr |  | 
						
							| 126 | 125 | recnd |  | 
						
							| 127 | 81 | ad4antlr |  | 
						
							| 128 |  | ltne |  | 
						
							| 129 | 128 | necomd |  | 
						
							| 130 | 102 129 | sylan |  | 
						
							| 131 | 120 124 126 127 130 | div2subd |  | 
						
							| 132 | 115 131 | eqtrd |  | 
						
							| 133 | 132 | fvoveq1d |  | 
						
							| 134 | 2 | ad3antrrr |  | 
						
							| 135 | 3 | ad3antrrr |  | 
						
							| 136 | 4 | ad3antrrr |  | 
						
							| 137 | 5 | ad3antrrr |  | 
						
							| 138 | 6 | ad3antrrr |  | 
						
							| 139 |  | simpllr |  | 
						
							| 140 |  | simplrl |  | 
						
							| 141 |  | simplrr |  | 
						
							| 142 |  | simprlr |  | 
						
							| 143 |  | fvoveq1 |  | 
						
							| 144 | 143 | breq1d |  | 
						
							| 145 | 144 | imbrov2fvoveq |  | 
						
							| 146 | 145 | rspccva |  | 
						
							| 147 | 142 146 | sylan |  | 
						
							| 148 | 96 117 | syl |  | 
						
							| 149 |  | simprr |  | 
						
							| 150 | 121 | ad3antlr |  | 
						
							| 151 | 103 | recnd |  | 
						
							| 152 | 151 | subidd |  | 
						
							| 153 | 152 | abs00bd |  | 
						
							| 154 | 153 | ad3antlr |  | 
						
							| 155 | 141 | rpgt0d |  | 
						
							| 156 | 154 155 | eqbrtrd |  | 
						
							| 157 | 1 134 135 136 137 138 139 111 140 141 147 148 149 150 156 | ftc1cnnclem |  | 
						
							| 158 | 133 157 | eqbrtrd |  | 
						
							| 159 | 113 | fvoveq1d |  | 
						
							| 160 | 159 | ad2antrr |  | 
						
							| 161 | 160 | ad2antlr |  | 
						
							| 162 | 1 134 135 136 137 138 139 111 140 141 147 150 156 148 149 | ftc1cnnclem |  | 
						
							| 163 | 161 162 | eqbrtrd |  | 
						
							| 164 | 158 163 | jaodan |  | 
						
							| 165 | 106 164 | syldan |  | 
						
							| 166 | 98 165 | mpdan |  | 
						
							| 167 | 166 | expr |  | 
						
							| 168 | 167 | adantld |  | 
						
							| 169 | 168 | expr |  | 
						
							| 170 | 169 | ralrimdva |  | 
						
							| 171 | 95 170 | sylbid |  | 
						
							| 172 | 171 | anassrs |  | 
						
							| 173 | 172 | reximdva |  | 
						
							| 174 | 75 173 | mpd |  | 
						
							| 175 | 174 | ralrimiva |  | 
						
							| 176 | 17 | adantr |  | 
						
							| 177 | 19 10 | sstrdi |  | 
						
							| 178 | 177 | adantr |  | 
						
							| 179 | 121 | adantl |  | 
						
							| 180 | 176 178 179 | dvlem |  | 
						
							| 181 | 180 | fmpttd |  | 
						
							| 182 | 177 | ssdifssd |  | 
						
							| 183 | 182 | adantr |  | 
						
							| 184 | 81 | adantl |  | 
						
							| 185 | 181 183 184 | ellimc3 |  | 
						
							| 186 | 42 175 185 | mpbir2and |  | 
						
							| 187 |  | eqid |  | 
						
							| 188 | 187 21 111 11 17 19 | eldv |  | 
						
							| 189 | 188 | adantr |  | 
						
							| 190 | 41 186 189 | mpbir2and |  | 
						
							| 191 |  | vex |  | 
						
							| 192 |  | fvex |  | 
						
							| 193 | 191 192 | breldm |  | 
						
							| 194 | 190 193 | syl |  | 
						
							| 195 | 25 194 | eqelssd |  | 
						
							| 196 |  | df-fn |  | 
						
							| 197 | 9 195 196 | sylanbrc |  | 
						
							| 198 | 16 | ffnd |  | 
						
							| 199 | 9 | adantr |  | 
						
							| 200 |  | funbrfv |  | 
						
							| 201 | 199 190 200 | sylc |  | 
						
							| 202 | 197 198 201 | eqfnfvd |  |