| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffvelcdm |
|- ( ( F : A --> RR /\ t e. A ) -> ( F ` t ) e. RR ) |
| 2 |
1
|
recnd |
|- ( ( F : A --> RR /\ t e. A ) -> ( F ` t ) e. CC ) |
| 3 |
|
id |
|- ( F : A --> RR -> F : A --> RR ) |
| 4 |
3
|
feqmptd |
|- ( F : A --> RR -> F = ( t e. A |-> ( F ` t ) ) ) |
| 5 |
|
absf |
|- abs : CC --> RR |
| 6 |
5
|
a1i |
|- ( F : A --> RR -> abs : CC --> RR ) |
| 7 |
6
|
feqmptd |
|- ( F : A --> RR -> abs = ( x e. CC |-> ( abs ` x ) ) ) |
| 8 |
|
fveq2 |
|- ( x = ( F ` t ) -> ( abs ` x ) = ( abs ` ( F ` t ) ) ) |
| 9 |
2 4 7 8
|
fmptco |
|- ( F : A --> RR -> ( abs o. F ) = ( t e. A |-> ( abs ` ( F ` t ) ) ) ) |
| 10 |
9
|
adantr |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( abs o. F ) = ( t e. A |-> ( abs ` ( F ` t ) ) ) ) |
| 11 |
2
|
abscld |
|- ( ( F : A --> RR /\ t e. A ) -> ( abs ` ( F ` t ) ) e. RR ) |
| 12 |
11
|
fmpttd |
|- ( F : A --> RR -> ( t e. A |-> ( abs ` ( F ` t ) ) ) : A --> RR ) |
| 13 |
12
|
adantr |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( t e. A |-> ( abs ` ( F ` t ) ) ) : A --> RR ) |
| 14 |
|
fdm |
|- ( F : A --> RR -> dom F = A ) |
| 15 |
14
|
adantr |
|- ( ( F : A --> RR /\ F e. MblFn ) -> dom F = A ) |
| 16 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
| 17 |
16
|
adantl |
|- ( ( F : A --> RR /\ F e. MblFn ) -> dom F e. dom vol ) |
| 18 |
15 17
|
eqeltrrd |
|- ( ( F : A --> RR /\ F e. MblFn ) -> A e. dom vol ) |
| 19 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
| 20 |
|
elioopnf |
|- ( x e. RR* -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) ) ) |
| 21 |
19 20
|
syl |
|- ( x e. RR -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) ) ) |
| 22 |
11
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( x < ( abs ` ( F ` t ) ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) ) ) |
| 23 |
22
|
bicomd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) <-> x < ( abs ` ( F ` t ) ) ) ) |
| 24 |
21 23
|
sylan9bbr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> x < ( abs ` ( F ` t ) ) ) ) |
| 25 |
|
ltnle |
|- ( ( x e. RR /\ ( abs ` ( F ` t ) ) e. RR ) -> ( x < ( abs ` ( F ` t ) ) <-> -. ( abs ` ( F ` t ) ) <_ x ) ) |
| 26 |
25
|
ancoms |
|- ( ( ( abs ` ( F ` t ) ) e. RR /\ x e. RR ) -> ( x < ( abs ` ( F ` t ) ) <-> -. ( abs ` ( F ` t ) ) <_ x ) ) |
| 27 |
11 26
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( x < ( abs ` ( F ` t ) ) <-> -. ( abs ` ( F ` t ) ) <_ x ) ) |
| 28 |
|
absle |
|- ( ( ( F ` t ) e. RR /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) <_ x <-> ( -u x <_ ( F ` t ) /\ ( F ` t ) <_ x ) ) ) |
| 29 |
1 28
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) <_ x <-> ( -u x <_ ( F ` t ) /\ ( F ` t ) <_ x ) ) ) |
| 30 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
| 31 |
|
lenlt |
|- ( ( -u x e. RR /\ ( F ` t ) e. RR ) -> ( -u x <_ ( F ` t ) <-> -. ( F ` t ) < -u x ) ) |
| 32 |
30 1 31
|
syl2anr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -u x <_ ( F ` t ) <-> -. ( F ` t ) < -u x ) ) |
| 33 |
1
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( F ` t ) < -u x <-> ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) ) ) |
| 34 |
30
|
rexrd |
|- ( x e. RR -> -u x e. RR* ) |
| 35 |
|
elioomnf |
|- ( -u x e. RR* -> ( ( F ` t ) e. ( -oo (,) -u x ) <-> ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) ) ) |
| 36 |
34 35
|
syl |
|- ( x e. RR -> ( ( F ` t ) e. ( -oo (,) -u x ) <-> ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) ) ) |
| 37 |
36
|
bicomd |
|- ( x e. RR -> ( ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) <-> ( F ` t ) e. ( -oo (,) -u x ) ) ) |
| 38 |
33 37
|
sylan9bb |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) < -u x <-> ( F ` t ) e. ( -oo (,) -u x ) ) ) |
| 39 |
38
|
notbid |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. ( F ` t ) < -u x <-> -. ( F ` t ) e. ( -oo (,) -u x ) ) ) |
| 40 |
32 39
|
bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -u x <_ ( F ` t ) <-> -. ( F ` t ) e. ( -oo (,) -u x ) ) ) |
| 41 |
|
lenlt |
|- ( ( ( F ` t ) e. RR /\ x e. RR ) -> ( ( F ` t ) <_ x <-> -. x < ( F ` t ) ) ) |
| 42 |
1 41
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) <_ x <-> -. x < ( F ` t ) ) ) |
| 43 |
1
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( x < ( F ` t ) <-> ( ( F ` t ) e. RR /\ x < ( F ` t ) ) ) ) |
| 44 |
|
elioopnf |
|- ( x e. RR* -> ( ( F ` t ) e. ( x (,) +oo ) <-> ( ( F ` t ) e. RR /\ x < ( F ` t ) ) ) ) |
| 45 |
19 44
|
syl |
|- ( x e. RR -> ( ( F ` t ) e. ( x (,) +oo ) <-> ( ( F ` t ) e. RR /\ x < ( F ` t ) ) ) ) |
| 46 |
45
|
bicomd |
|- ( x e. RR -> ( ( ( F ` t ) e. RR /\ x < ( F ` t ) ) <-> ( F ` t ) e. ( x (,) +oo ) ) ) |
| 47 |
43 46
|
sylan9bb |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( x < ( F ` t ) <-> ( F ` t ) e. ( x (,) +oo ) ) ) |
| 48 |
47
|
notbid |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. x < ( F ` t ) <-> -. ( F ` t ) e. ( x (,) +oo ) ) ) |
| 49 |
42 48
|
bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) <_ x <-> -. ( F ` t ) e. ( x (,) +oo ) ) ) |
| 50 |
40 49
|
anbi12d |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( -u x <_ ( F ` t ) /\ ( F ` t ) <_ x ) <-> ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) ) |
| 51 |
29 50
|
bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) <_ x <-> ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) ) |
| 52 |
51
|
notbid |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. ( abs ` ( F ` t ) ) <_ x <-> -. ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) ) |
| 53 |
|
elun |
|- ( ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) <-> ( ( F ` t ) e. ( -oo (,) -u x ) \/ ( F ` t ) e. ( x (,) +oo ) ) ) |
| 54 |
|
oran |
|- ( ( ( F ` t ) e. ( -oo (,) -u x ) \/ ( F ` t ) e. ( x (,) +oo ) ) <-> -. ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) |
| 55 |
53 54
|
bitri |
|- ( ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) <-> -. ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) |
| 56 |
52 55
|
bitr4di |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. ( abs ` ( F ` t ) ) <_ x <-> ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
| 57 |
24 27 56
|
3bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
| 58 |
57
|
an32s |
|- ( ( ( F : A --> RR /\ x e. RR ) /\ t e. A ) -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
| 59 |
58
|
rabbidva |
|- ( ( F : A --> RR /\ x e. RR ) -> { t e. A | ( abs ` ( F ` t ) ) e. ( x (,) +oo ) } = { t e. A | ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) } ) |
| 60 |
|
eqid |
|- ( t e. A |-> ( abs ` ( F ` t ) ) ) = ( t e. A |-> ( abs ` ( F ` t ) ) ) |
| 61 |
60
|
mptpreima |
|- ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = { t e. A | ( abs ` ( F ` t ) ) e. ( x (,) +oo ) } |
| 62 |
|
eqid |
|- ( t e. A |-> ( F ` t ) ) = ( t e. A |-> ( F ` t ) ) |
| 63 |
62
|
mptpreima |
|- ( `' ( t e. A |-> ( F ` t ) ) " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) = { t e. A | ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) } |
| 64 |
59 61 63
|
3eqtr4g |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
| 65 |
|
simpl |
|- ( ( F : A --> RR /\ x e. RR ) -> F : A --> RR ) |
| 66 |
65
|
feqmptd |
|- ( ( F : A --> RR /\ x e. RR ) -> F = ( t e. A |-> ( F ` t ) ) ) |
| 67 |
66
|
cnveqd |
|- ( ( F : A --> RR /\ x e. RR ) -> `' F = `' ( t e. A |-> ( F ` t ) ) ) |
| 68 |
67
|
imaeq1d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' F " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
| 69 |
64 68
|
eqtr4d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( `' F " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
| 70 |
|
imaundi |
|- ( `' F " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) = ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) |
| 71 |
69 70
|
eqtrdi |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) ) |
| 72 |
71
|
adantlr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) ) |
| 73 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) -u x ) ) e. dom vol ) |
| 74 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 75 |
|
unmbl |
|- ( ( ( `' F " ( -oo (,) -u x ) ) e. dom vol /\ ( `' F " ( x (,) +oo ) ) e. dom vol ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
| 76 |
73 74 75
|
syl2anc |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
| 77 |
76
|
ancoms |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
| 78 |
77
|
adantr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
| 79 |
72 78
|
eqeltrd |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) e. dom vol ) |
| 80 |
|
abslt |
|- ( ( ( F ` t ) e. RR /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) < x <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
| 81 |
1 80
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) < x <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
| 82 |
|
elioomnf |
|- ( x e. RR* -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) ) ) |
| 83 |
19 82
|
syl |
|- ( x e. RR -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) ) ) |
| 84 |
11
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( abs ` ( F ` t ) ) < x <-> ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) ) ) |
| 85 |
84
|
bicomd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) <-> ( abs ` ( F ` t ) ) < x ) ) |
| 86 |
83 85
|
sylan9bbr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( abs ` ( F ` t ) ) < x ) ) |
| 87 |
34 19
|
jca |
|- ( x e. RR -> ( -u x e. RR* /\ x e. RR* ) ) |
| 88 |
1
|
rexrd |
|- ( ( F : A --> RR /\ t e. A ) -> ( F ` t ) e. RR* ) |
| 89 |
|
elioo5 |
|- ( ( -u x e. RR* /\ x e. RR* /\ ( F ` t ) e. RR* ) -> ( ( F ` t ) e. ( -u x (,) x ) <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
| 90 |
89
|
3expa |
|- ( ( ( -u x e. RR* /\ x e. RR* ) /\ ( F ` t ) e. RR* ) -> ( ( F ` t ) e. ( -u x (,) x ) <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
| 91 |
87 88 90
|
syl2anr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) e. ( -u x (,) x ) <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
| 92 |
81 86 91
|
3bitr4d |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( F ` t ) e. ( -u x (,) x ) ) ) |
| 93 |
92
|
an32s |
|- ( ( ( F : A --> RR /\ x e. RR ) /\ t e. A ) -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( F ` t ) e. ( -u x (,) x ) ) ) |
| 94 |
93
|
rabbidva |
|- ( ( F : A --> RR /\ x e. RR ) -> { t e. A | ( abs ` ( F ` t ) ) e. ( -oo (,) x ) } = { t e. A | ( F ` t ) e. ( -u x (,) x ) } ) |
| 95 |
60
|
mptpreima |
|- ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = { t e. A | ( abs ` ( F ` t ) ) e. ( -oo (,) x ) } |
| 96 |
62
|
mptpreima |
|- ( `' ( t e. A |-> ( F ` t ) ) " ( -u x (,) x ) ) = { t e. A | ( F ` t ) e. ( -u x (,) x ) } |
| 97 |
94 95 96
|
3eqtr4g |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( -u x (,) x ) ) ) |
| 98 |
67
|
imaeq1d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' F " ( -u x (,) x ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( -u x (,) x ) ) ) |
| 99 |
97 98
|
eqtr4d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = ( `' F " ( -u x (,) x ) ) ) |
| 100 |
99
|
adantlr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = ( `' F " ( -u x (,) x ) ) ) |
| 101 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -u x (,) x ) ) e. dom vol ) |
| 102 |
101
|
ancoms |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( `' F " ( -u x (,) x ) ) e. dom vol ) |
| 103 |
102
|
adantr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' F " ( -u x (,) x ) ) e. dom vol ) |
| 104 |
100 103
|
eqeltrd |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) e. dom vol ) |
| 105 |
13 18 79 104
|
ismbf2d |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( t e. A |-> ( abs ` ( F ` t ) ) ) e. MblFn ) |
| 106 |
10 105
|
eqeltrd |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( abs o. F ) e. MblFn ) |