Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
|- ( ( F : A --> RR /\ t e. A ) -> ( F ` t ) e. RR ) |
2 |
1
|
recnd |
|- ( ( F : A --> RR /\ t e. A ) -> ( F ` t ) e. CC ) |
3 |
|
id |
|- ( F : A --> RR -> F : A --> RR ) |
4 |
3
|
feqmptd |
|- ( F : A --> RR -> F = ( t e. A |-> ( F ` t ) ) ) |
5 |
|
absf |
|- abs : CC --> RR |
6 |
5
|
a1i |
|- ( F : A --> RR -> abs : CC --> RR ) |
7 |
6
|
feqmptd |
|- ( F : A --> RR -> abs = ( x e. CC |-> ( abs ` x ) ) ) |
8 |
|
fveq2 |
|- ( x = ( F ` t ) -> ( abs ` x ) = ( abs ` ( F ` t ) ) ) |
9 |
2 4 7 8
|
fmptco |
|- ( F : A --> RR -> ( abs o. F ) = ( t e. A |-> ( abs ` ( F ` t ) ) ) ) |
10 |
9
|
adantr |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( abs o. F ) = ( t e. A |-> ( abs ` ( F ` t ) ) ) ) |
11 |
2
|
abscld |
|- ( ( F : A --> RR /\ t e. A ) -> ( abs ` ( F ` t ) ) e. RR ) |
12 |
11
|
fmpttd |
|- ( F : A --> RR -> ( t e. A |-> ( abs ` ( F ` t ) ) ) : A --> RR ) |
13 |
12
|
adantr |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( t e. A |-> ( abs ` ( F ` t ) ) ) : A --> RR ) |
14 |
|
fdm |
|- ( F : A --> RR -> dom F = A ) |
15 |
14
|
adantr |
|- ( ( F : A --> RR /\ F e. MblFn ) -> dom F = A ) |
16 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
17 |
16
|
adantl |
|- ( ( F : A --> RR /\ F e. MblFn ) -> dom F e. dom vol ) |
18 |
15 17
|
eqeltrrd |
|- ( ( F : A --> RR /\ F e. MblFn ) -> A e. dom vol ) |
19 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
20 |
|
elioopnf |
|- ( x e. RR* -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) ) ) |
21 |
19 20
|
syl |
|- ( x e. RR -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) ) ) |
22 |
11
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( x < ( abs ` ( F ` t ) ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) ) ) |
23 |
22
|
bicomd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( ( abs ` ( F ` t ) ) e. RR /\ x < ( abs ` ( F ` t ) ) ) <-> x < ( abs ` ( F ` t ) ) ) ) |
24 |
21 23
|
sylan9bbr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> x < ( abs ` ( F ` t ) ) ) ) |
25 |
|
ltnle |
|- ( ( x e. RR /\ ( abs ` ( F ` t ) ) e. RR ) -> ( x < ( abs ` ( F ` t ) ) <-> -. ( abs ` ( F ` t ) ) <_ x ) ) |
26 |
25
|
ancoms |
|- ( ( ( abs ` ( F ` t ) ) e. RR /\ x e. RR ) -> ( x < ( abs ` ( F ` t ) ) <-> -. ( abs ` ( F ` t ) ) <_ x ) ) |
27 |
11 26
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( x < ( abs ` ( F ` t ) ) <-> -. ( abs ` ( F ` t ) ) <_ x ) ) |
28 |
|
absle |
|- ( ( ( F ` t ) e. RR /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) <_ x <-> ( -u x <_ ( F ` t ) /\ ( F ` t ) <_ x ) ) ) |
29 |
1 28
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) <_ x <-> ( -u x <_ ( F ` t ) /\ ( F ` t ) <_ x ) ) ) |
30 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
31 |
|
lenlt |
|- ( ( -u x e. RR /\ ( F ` t ) e. RR ) -> ( -u x <_ ( F ` t ) <-> -. ( F ` t ) < -u x ) ) |
32 |
30 1 31
|
syl2anr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -u x <_ ( F ` t ) <-> -. ( F ` t ) < -u x ) ) |
33 |
1
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( F ` t ) < -u x <-> ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) ) ) |
34 |
30
|
rexrd |
|- ( x e. RR -> -u x e. RR* ) |
35 |
|
elioomnf |
|- ( -u x e. RR* -> ( ( F ` t ) e. ( -oo (,) -u x ) <-> ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) ) ) |
36 |
34 35
|
syl |
|- ( x e. RR -> ( ( F ` t ) e. ( -oo (,) -u x ) <-> ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) ) ) |
37 |
36
|
bicomd |
|- ( x e. RR -> ( ( ( F ` t ) e. RR /\ ( F ` t ) < -u x ) <-> ( F ` t ) e. ( -oo (,) -u x ) ) ) |
38 |
33 37
|
sylan9bb |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) < -u x <-> ( F ` t ) e. ( -oo (,) -u x ) ) ) |
39 |
38
|
notbid |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. ( F ` t ) < -u x <-> -. ( F ` t ) e. ( -oo (,) -u x ) ) ) |
40 |
32 39
|
bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -u x <_ ( F ` t ) <-> -. ( F ` t ) e. ( -oo (,) -u x ) ) ) |
41 |
|
lenlt |
|- ( ( ( F ` t ) e. RR /\ x e. RR ) -> ( ( F ` t ) <_ x <-> -. x < ( F ` t ) ) ) |
42 |
1 41
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) <_ x <-> -. x < ( F ` t ) ) ) |
43 |
1
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( x < ( F ` t ) <-> ( ( F ` t ) e. RR /\ x < ( F ` t ) ) ) ) |
44 |
|
elioopnf |
|- ( x e. RR* -> ( ( F ` t ) e. ( x (,) +oo ) <-> ( ( F ` t ) e. RR /\ x < ( F ` t ) ) ) ) |
45 |
19 44
|
syl |
|- ( x e. RR -> ( ( F ` t ) e. ( x (,) +oo ) <-> ( ( F ` t ) e. RR /\ x < ( F ` t ) ) ) ) |
46 |
45
|
bicomd |
|- ( x e. RR -> ( ( ( F ` t ) e. RR /\ x < ( F ` t ) ) <-> ( F ` t ) e. ( x (,) +oo ) ) ) |
47 |
43 46
|
sylan9bb |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( x < ( F ` t ) <-> ( F ` t ) e. ( x (,) +oo ) ) ) |
48 |
47
|
notbid |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. x < ( F ` t ) <-> -. ( F ` t ) e. ( x (,) +oo ) ) ) |
49 |
42 48
|
bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) <_ x <-> -. ( F ` t ) e. ( x (,) +oo ) ) ) |
50 |
40 49
|
anbi12d |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( -u x <_ ( F ` t ) /\ ( F ` t ) <_ x ) <-> ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) ) |
51 |
29 50
|
bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) <_ x <-> ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) ) |
52 |
51
|
notbid |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. ( abs ` ( F ` t ) ) <_ x <-> -. ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) ) |
53 |
|
elun |
|- ( ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) <-> ( ( F ` t ) e. ( -oo (,) -u x ) \/ ( F ` t ) e. ( x (,) +oo ) ) ) |
54 |
|
oran |
|- ( ( ( F ` t ) e. ( -oo (,) -u x ) \/ ( F ` t ) e. ( x (,) +oo ) ) <-> -. ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) |
55 |
53 54
|
bitri |
|- ( ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) <-> -. ( -. ( F ` t ) e. ( -oo (,) -u x ) /\ -. ( F ` t ) e. ( x (,) +oo ) ) ) |
56 |
52 55
|
bitr4di |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( -. ( abs ` ( F ` t ) ) <_ x <-> ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
57 |
24 27 56
|
3bitrd |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
58 |
57
|
an32s |
|- ( ( ( F : A --> RR /\ x e. RR ) /\ t e. A ) -> ( ( abs ` ( F ` t ) ) e. ( x (,) +oo ) <-> ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
59 |
58
|
rabbidva |
|- ( ( F : A --> RR /\ x e. RR ) -> { t e. A | ( abs ` ( F ` t ) ) e. ( x (,) +oo ) } = { t e. A | ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) } ) |
60 |
|
eqid |
|- ( t e. A |-> ( abs ` ( F ` t ) ) ) = ( t e. A |-> ( abs ` ( F ` t ) ) ) |
61 |
60
|
mptpreima |
|- ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = { t e. A | ( abs ` ( F ` t ) ) e. ( x (,) +oo ) } |
62 |
|
eqid |
|- ( t e. A |-> ( F ` t ) ) = ( t e. A |-> ( F ` t ) ) |
63 |
62
|
mptpreima |
|- ( `' ( t e. A |-> ( F ` t ) ) " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) = { t e. A | ( F ` t ) e. ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) } |
64 |
59 61 63
|
3eqtr4g |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
65 |
|
simpl |
|- ( ( F : A --> RR /\ x e. RR ) -> F : A --> RR ) |
66 |
65
|
feqmptd |
|- ( ( F : A --> RR /\ x e. RR ) -> F = ( t e. A |-> ( F ` t ) ) ) |
67 |
66
|
cnveqd |
|- ( ( F : A --> RR /\ x e. RR ) -> `' F = `' ( t e. A |-> ( F ` t ) ) ) |
68 |
67
|
imaeq1d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' F " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
69 |
64 68
|
eqtr4d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( `' F " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) ) |
70 |
|
imaundi |
|- ( `' F " ( ( -oo (,) -u x ) u. ( x (,) +oo ) ) ) = ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) |
71 |
69 70
|
eqtrdi |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) ) |
72 |
71
|
adantlr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) = ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) ) |
73 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) -u x ) ) e. dom vol ) |
74 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
75 |
|
unmbl |
|- ( ( ( `' F " ( -oo (,) -u x ) ) e. dom vol /\ ( `' F " ( x (,) +oo ) ) e. dom vol ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
76 |
73 74 75
|
syl2anc |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
77 |
76
|
ancoms |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
78 |
77
|
adantr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( ( `' F " ( -oo (,) -u x ) ) u. ( `' F " ( x (,) +oo ) ) ) e. dom vol ) |
79 |
72 78
|
eqeltrd |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( x (,) +oo ) ) e. dom vol ) |
80 |
|
abslt |
|- ( ( ( F ` t ) e. RR /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) < x <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
81 |
1 80
|
sylan |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) < x <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
82 |
|
elioomnf |
|- ( x e. RR* -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) ) ) |
83 |
19 82
|
syl |
|- ( x e. RR -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) ) ) |
84 |
11
|
biantrurd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( abs ` ( F ` t ) ) < x <-> ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) ) ) |
85 |
84
|
bicomd |
|- ( ( F : A --> RR /\ t e. A ) -> ( ( ( abs ` ( F ` t ) ) e. RR /\ ( abs ` ( F ` t ) ) < x ) <-> ( abs ` ( F ` t ) ) < x ) ) |
86 |
83 85
|
sylan9bbr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( abs ` ( F ` t ) ) < x ) ) |
87 |
34 19
|
jca |
|- ( x e. RR -> ( -u x e. RR* /\ x e. RR* ) ) |
88 |
1
|
rexrd |
|- ( ( F : A --> RR /\ t e. A ) -> ( F ` t ) e. RR* ) |
89 |
|
elioo5 |
|- ( ( -u x e. RR* /\ x e. RR* /\ ( F ` t ) e. RR* ) -> ( ( F ` t ) e. ( -u x (,) x ) <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
90 |
89
|
3expa |
|- ( ( ( -u x e. RR* /\ x e. RR* ) /\ ( F ` t ) e. RR* ) -> ( ( F ` t ) e. ( -u x (,) x ) <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
91 |
87 88 90
|
syl2anr |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( F ` t ) e. ( -u x (,) x ) <-> ( -u x < ( F ` t ) /\ ( F ` t ) < x ) ) ) |
92 |
81 86 91
|
3bitr4d |
|- ( ( ( F : A --> RR /\ t e. A ) /\ x e. RR ) -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( F ` t ) e. ( -u x (,) x ) ) ) |
93 |
92
|
an32s |
|- ( ( ( F : A --> RR /\ x e. RR ) /\ t e. A ) -> ( ( abs ` ( F ` t ) ) e. ( -oo (,) x ) <-> ( F ` t ) e. ( -u x (,) x ) ) ) |
94 |
93
|
rabbidva |
|- ( ( F : A --> RR /\ x e. RR ) -> { t e. A | ( abs ` ( F ` t ) ) e. ( -oo (,) x ) } = { t e. A | ( F ` t ) e. ( -u x (,) x ) } ) |
95 |
60
|
mptpreima |
|- ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = { t e. A | ( abs ` ( F ` t ) ) e. ( -oo (,) x ) } |
96 |
62
|
mptpreima |
|- ( `' ( t e. A |-> ( F ` t ) ) " ( -u x (,) x ) ) = { t e. A | ( F ` t ) e. ( -u x (,) x ) } |
97 |
94 95 96
|
3eqtr4g |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( -u x (,) x ) ) ) |
98 |
67
|
imaeq1d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' F " ( -u x (,) x ) ) = ( `' ( t e. A |-> ( F ` t ) ) " ( -u x (,) x ) ) ) |
99 |
97 98
|
eqtr4d |
|- ( ( F : A --> RR /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = ( `' F " ( -u x (,) x ) ) ) |
100 |
99
|
adantlr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) = ( `' F " ( -u x (,) x ) ) ) |
101 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -u x (,) x ) ) e. dom vol ) |
102 |
101
|
ancoms |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( `' F " ( -u x (,) x ) ) e. dom vol ) |
103 |
102
|
adantr |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' F " ( -u x (,) x ) ) e. dom vol ) |
104 |
100 103
|
eqeltrd |
|- ( ( ( F : A --> RR /\ F e. MblFn ) /\ x e. RR ) -> ( `' ( t e. A |-> ( abs ` ( F ` t ) ) ) " ( -oo (,) x ) ) e. dom vol ) |
105 |
13 18 79 104
|
ismbf2d |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( t e. A |-> ( abs ` ( F ` t ) ) ) e. MblFn ) |
106 |
10 105
|
eqeltrd |
|- ( ( F : A --> RR /\ F e. MblFn ) -> ( abs o. F ) e. MblFn ) |