Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
3 |
|
id |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℝ ) |
4 |
3
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
5 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
6 |
5
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → abs : ℂ ⟶ ℝ ) |
7 |
6
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑡 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
9 |
2 4 7 8
|
fmptco |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( abs ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( abs ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
11 |
2
|
abscld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
12 |
11
|
fmpttd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
14 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → dom 𝐹 = 𝐴 ) |
16 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
17 |
16
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → dom 𝐹 ∈ dom vol ) |
18 |
15 17
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → 𝐴 ∈ dom vol ) |
19 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
20 |
|
elioopnf |
⊢ ( 𝑥 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
22 |
11
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
23 |
22
|
bicomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ↔ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
24 |
21 23
|
sylan9bbr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
25 |
|
ltnle |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ) ) |
26 |
25
|
ancoms |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ) ) |
27 |
11 26
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ) ) |
28 |
|
absle |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ) ) ) |
29 |
1 28
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ) ) ) |
30 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
31 |
|
lenlt |
⊢ ( ( - 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) → ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) |
32 |
30 1 31
|
syl2anr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) |
33 |
1
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑡 ) < - 𝑥 ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) ) |
34 |
30
|
rexrd |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ* ) |
35 |
|
elioomnf |
⊢ ( - 𝑥 ∈ ℝ* → ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) ) |
36 |
34 35
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) ) |
37 |
36
|
bicomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
38 |
33 37
|
sylan9bb |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) < - 𝑥 ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
39 |
38
|
notbid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
40 |
32 39
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
41 |
|
lenlt |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ↔ ¬ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) |
42 |
1 41
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ↔ ¬ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) |
43 |
1
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝑥 < ( 𝐹 ‘ 𝑡 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) ) |
44 |
|
elioopnf |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) ) |
45 |
19 44
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) ) |
46 |
45
|
bicomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
47 |
43 46
|
sylan9bb |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( 𝐹 ‘ 𝑡 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
48 |
47
|
notbid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 < ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
49 |
42 48
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
50 |
40 49
|
anbi12d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ) ↔ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) ) |
51 |
29 50
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) ) |
52 |
51
|
notbid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ¬ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) ) |
53 |
|
elun |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∨ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
54 |
|
oran |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∨ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ↔ ¬ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
55 |
53 54
|
bitri |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ↔ ¬ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
56 |
52 55
|
bitr4di |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
57 |
24 27 56
|
3bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
58 |
57
|
an32s |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑡 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
59 |
58
|
rabbidva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) } = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) } ) |
60 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
61 |
60
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) } |
62 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) |
63 |
62
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) } |
64 |
59 61 63
|
3eqtr4g |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
65 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
66 |
65
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → 𝐹 = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
67 |
66
|
cnveqd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ◡ 𝐹 = ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
68 |
67
|
imaeq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
69 |
64 68
|
eqtr4d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
70 |
|
imaundi |
⊢ ( ◡ 𝐹 “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) |
71 |
69 70
|
eqtrdi |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ) |
72 |
71
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ) |
73 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∈ dom vol ) |
74 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
75 |
|
unmbl |
⊢ ( ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
76 |
73 74 75
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
77 |
76
|
ancoms |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
78 |
77
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
79 |
72 78
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
80 |
|
abslt |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
81 |
1 80
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
82 |
|
elioomnf |
⊢ ( 𝑥 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) ) |
83 |
19 82
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) ) |
84 |
11
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) ) |
85 |
84
|
bicomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) |
86 |
83 85
|
sylan9bbr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) |
87 |
34 19
|
jca |
⊢ ( 𝑥 ∈ ℝ → ( - 𝑥 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) |
88 |
1
|
rexrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) |
89 |
|
elioo5 |
⊢ ( ( - 𝑥 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
90 |
89
|
3expa |
⊢ ( ( ( - 𝑥 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
91 |
87 88 90
|
syl2anr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
92 |
81 86 91
|
3bitr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ) ) |
93 |
92
|
an32s |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑡 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ) ) |
94 |
93
|
rabbidva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) } = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) } ) |
95 |
60
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) } |
96 |
62
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( - 𝑥 (,) 𝑥 ) ) = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) } |
97 |
94 95 96
|
3eqtr4g |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( - 𝑥 (,) 𝑥 ) ) ) |
98 |
67
|
imaeq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( - 𝑥 (,) 𝑥 ) ) ) |
99 |
97 98
|
eqtr4d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ) |
100 |
99
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ) |
101 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ∈ dom vol ) |
102 |
101
|
ancoms |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ∈ dom vol ) |
103 |
102
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ∈ dom vol ) |
104 |
100 103
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
105 |
13 18 79 104
|
ismbf2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
106 |
10 105
|
eqeltrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( abs ∘ 𝐹 ) ∈ MblFn ) |