| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 3 |
|
id |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℝ ) |
| 4 |
3
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 5 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 6 |
5
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → abs : ℂ ⟶ ℝ ) |
| 7 |
6
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑡 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 9 |
2 4 7 8
|
fmptco |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( abs ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( abs ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 11 |
2
|
abscld |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 12 |
11
|
fmpttd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : 𝐴 ⟶ ℝ ) |
| 14 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → dom 𝐹 = 𝐴 ) |
| 16 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → dom 𝐹 ∈ dom vol ) |
| 18 |
15 17
|
eqeltrrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → 𝐴 ∈ dom vol ) |
| 19 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 20 |
|
elioopnf |
⊢ ( 𝑥 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 22 |
11
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 23 |
22
|
bicomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ↔ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 24 |
21 23
|
sylan9bbr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 25 |
|
ltnle |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ) ) |
| 26 |
25
|
ancoms |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ) ) |
| 27 |
11 26
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ) ) |
| 28 |
|
absle |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ) ) ) |
| 29 |
1 28
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ) ) ) |
| 30 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
| 31 |
|
lenlt |
⊢ ( ( - 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) → ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) |
| 32 |
30 1 31
|
syl2anr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) |
| 33 |
1
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑡 ) < - 𝑥 ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) ) |
| 34 |
30
|
rexrd |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ* ) |
| 35 |
|
elioomnf |
⊢ ( - 𝑥 ∈ ℝ* → ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ) ) |
| 37 |
36
|
bicomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
| 38 |
33 37
|
sylan9bb |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) < - 𝑥 ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
| 39 |
38
|
notbid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( 𝐹 ‘ 𝑡 ) < - 𝑥 ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
| 40 |
32 39
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ) ) |
| 41 |
|
lenlt |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ↔ ¬ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) |
| 42 |
1 41
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ↔ ¬ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) |
| 43 |
1
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝑥 < ( 𝐹 ‘ 𝑡 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 44 |
|
elioopnf |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 45 |
19 44
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 46 |
45
|
bicomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝑡 ) ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
| 47 |
43 46
|
sylan9bb |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < ( 𝐹 ‘ 𝑡 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
| 48 |
47
|
notbid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 < ( 𝐹 ‘ 𝑡 ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
| 49 |
42 48
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
| 50 |
40 49
|
anbi12d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( - 𝑥 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 𝑥 ) ↔ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) ) |
| 51 |
29 50
|
bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) ) |
| 52 |
51
|
notbid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ¬ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) ) |
| 53 |
|
elun |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∨ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
| 54 |
|
oran |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∨ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ↔ ¬ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
| 55 |
53 54
|
bitri |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ↔ ¬ ( ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( -∞ (,) - 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝑥 (,) +∞ ) ) ) |
| 56 |
52 55
|
bitr4di |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
| 57 |
24 27 56
|
3bitrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
| 58 |
57
|
an32s |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑡 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
| 59 |
58
|
rabbidva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) } = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) } ) |
| 60 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 61 |
60
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 𝑥 (,) +∞ ) } |
| 62 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) |
| 63 |
62
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) } |
| 64 |
59 61 63
|
3eqtr4g |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
| 65 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 66 |
65
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → 𝐹 = ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 67 |
66
|
cnveqd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ◡ 𝐹 = ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 68 |
67
|
imaeq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
| 69 |
64 68
|
eqtr4d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) ) |
| 70 |
|
imaundi |
⊢ ( ◡ 𝐹 “ ( ( -∞ (,) - 𝑥 ) ∪ ( 𝑥 (,) +∞ ) ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) |
| 71 |
69 70
|
eqtrdi |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ) |
| 72 |
71
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ) |
| 73 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∈ dom vol ) |
| 74 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 75 |
|
unmbl |
⊢ ( ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
| 76 |
73 74 75
|
syl2anc |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
| 77 |
76
|
ancoms |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) - 𝑥 ) ) ∪ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ) ∈ dom vol ) |
| 79 |
72 78
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 80 |
|
abslt |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
| 81 |
1 80
|
sylan |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
| 82 |
|
elioomnf |
⊢ ( 𝑥 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) ) |
| 83 |
19 82
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) ) |
| 84 |
11
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) ) |
| 85 |
84
|
bicomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) |
| 86 |
83 85
|
sylan9bbr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) < 𝑥 ) ) |
| 87 |
34 19
|
jca |
⊢ ( 𝑥 ∈ ℝ → ( - 𝑥 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) |
| 88 |
1
|
rexrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) |
| 89 |
|
elioo5 |
⊢ ( ( - 𝑥 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
| 90 |
89
|
3expa |
⊢ ( ( ( - 𝑥 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
| 91 |
87 88 90
|
syl2anr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ↔ ( - 𝑥 < ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) < 𝑥 ) ) ) |
| 92 |
81 86 91
|
3bitr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑡 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ) ) |
| 93 |
92
|
an32s |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑡 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) ) ) |
| 94 |
93
|
rabbidva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) } = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) } ) |
| 95 |
60
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = { 𝑡 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( -∞ (,) 𝑥 ) } |
| 96 |
62
|
mptpreima |
⊢ ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( - 𝑥 (,) 𝑥 ) ) = { 𝑡 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑡 ) ∈ ( - 𝑥 (,) 𝑥 ) } |
| 97 |
94 95 96
|
3eqtr4g |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( - 𝑥 (,) 𝑥 ) ) ) |
| 98 |
67
|
imaeq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) = ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑡 ) ) “ ( - 𝑥 (,) 𝑥 ) ) ) |
| 99 |
97 98
|
eqtr4d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ) |
| 100 |
99
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ) |
| 101 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ∈ dom vol ) |
| 102 |
101
|
ancoms |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ∈ dom vol ) |
| 103 |
102
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( - 𝑥 (,) 𝑥 ) ) ∈ dom vol ) |
| 104 |
100 103
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 105 |
13 18 79 104
|
ismbf2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( 𝑡 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
| 106 |
10 105
|
eqeltrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( abs ∘ 𝐹 ) ∈ MblFn ) |