| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1anc.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 2 |
|
ftc1anc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
ftc1anc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
ftc1anc.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
|
ftc1anc.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ftc1anc.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 7 |
|
ftc1anc.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
| 8 |
|
ftc1anc.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 9 |
|
ftc1anc.t |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( (,) “ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ( abs ‘ ∫ 𝑠 ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝑠 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 10 |
1 2 3 4 5 6 7 8
|
ftc1lem2 |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 11 |
|
rphalfcl |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 12 |
1 2 3 4 5 6 7 8
|
ftc1anclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑦 / 2 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ dom ∫1 ∃ 𝑔 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) |
| 13 |
11 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑓 ∈ dom ∫1 ∃ 𝑔 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) |
| 14 |
13
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑓 ∈ dom ∫1 ∃ 𝑔 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) |
| 15 |
11
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 16 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 17 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
| 18 |
17
|
frnd |
⊢ ( 𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ran 𝑓 ⊆ ℝ ) |
| 20 |
|
i1ff |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 : ℝ ⟶ ℝ ) |
| 21 |
20
|
frnd |
⊢ ( 𝑔 ∈ dom ∫1 → ran 𝑔 ⊆ ℝ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ran 𝑔 ⊆ ℝ ) |
| 23 |
19 22
|
unssd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℝ ) |
| 24 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 25 |
23 24
|
sstrdi |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ) |
| 26 |
|
i1f0rn |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ∈ ran 𝑓 ) |
| 27 |
|
elun1 |
⊢ ( 0 ∈ ran 𝑓 → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 28 |
26 27
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 30 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 31 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 32 |
30 31
|
ax-mp |
⊢ abs Fn ℂ |
| 33 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 34 |
32 33
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 35 |
25 29 34
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 36 |
35
|
ne0d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ) |
| 37 |
|
imassrn |
⊢ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ran abs |
| 38 |
|
frn |
⊢ ( abs : ℂ ⟶ ℝ → ran abs ⊆ ℝ ) |
| 39 |
30 38
|
ax-mp |
⊢ ran abs ⊆ ℝ |
| 40 |
37 39
|
sstri |
⊢ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ |
| 41 |
|
ffun |
⊢ ( abs : ℂ ⟶ ℝ → Fun abs ) |
| 42 |
30 41
|
ax-mp |
⊢ Fun abs |
| 43 |
|
i1frn |
⊢ ( 𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin ) |
| 44 |
|
i1frn |
⊢ ( 𝑔 ∈ dom ∫1 → ran 𝑔 ∈ Fin ) |
| 45 |
|
unfi |
⊢ ( ( ran 𝑓 ∈ Fin ∧ ran 𝑔 ∈ Fin ) → ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) |
| 46 |
43 44 45
|
syl2an |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) |
| 47 |
|
imafi |
⊢ ( ( Fun abs ∧ ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) |
| 48 |
42 46 47
|
sylancr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) |
| 49 |
|
fimaxre2 |
⊢ ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) |
| 50 |
40 48 49
|
sylancr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) |
| 51 |
|
suprcl |
⊢ ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 52 |
40 51
|
mp3an1 |
⊢ ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 53 |
36 50 52
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 55 |
|
0red |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 ∈ ℝ ) |
| 56 |
25
|
sselda |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → 𝑟 ∈ ℂ ) |
| 57 |
56
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ℝ ) |
| 58 |
57
|
adantrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → ( abs ‘ 𝑟 ) ∈ ℝ ) |
| 59 |
53
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 60 |
|
absgt0 |
⊢ ( 𝑟 ∈ ℂ → ( 𝑟 ≠ 0 ↔ 0 < ( abs ‘ 𝑟 ) ) ) |
| 61 |
56 60
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( 𝑟 ≠ 0 ↔ 0 < ( abs ‘ 𝑟 ) ) ) |
| 62 |
61
|
biimpd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( 𝑟 ≠ 0 → 0 < ( abs ‘ 𝑟 ) ) ) |
| 63 |
62
|
impr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 < ( abs ‘ 𝑟 ) ) |
| 64 |
40
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ) |
| 65 |
64 36 50
|
3jca |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
| 67 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 68 |
32 67
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 69 |
25 68
|
sylan |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 70 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 71 |
66 69 70
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 72 |
71
|
adantrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 73 |
55 58 59 63 72
|
ltletrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 < sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 74 |
73
|
rexlimdvaa |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 → 0 < sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 75 |
74
|
imp |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → 0 < sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 76 |
54 75
|
elrpd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) |
| 77 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 78 |
16 76 77
|
sylancr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 79 |
|
rpdivcl |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
| 80 |
15 78 79
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
| 81 |
80
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
| 82 |
81
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
| 83 |
|
ancom |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ↔ ( 𝑦 ∈ ℝ+ ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 84 |
83
|
anbi2i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ↔ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 85 |
|
an32 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ↔ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ) |
| 86 |
85
|
anbi1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ) |
| 87 |
|
an32 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ) |
| 88 |
86 87
|
bitri |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ↔ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ) |
| 89 |
88
|
anbi1i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ↔ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ) |
| 90 |
|
an32 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ↔ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ) |
| 91 |
89 90
|
bitri |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ↔ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ) |
| 92 |
|
anass |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 93 |
84 91 92
|
3bitr4i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 94 |
|
oveq12 |
⊢ ( ( 𝑏 = 𝑤 ∧ 𝑎 = 𝑢 ) → ( 𝑏 − 𝑎 ) = ( 𝑤 − 𝑢 ) ) |
| 95 |
94
|
ancoms |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑤 ) → ( 𝑏 − 𝑎 ) = ( 𝑤 − 𝑢 ) ) |
| 96 |
95
|
fveq2d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑤 ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 97 |
96
|
breq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑤 ) → ( ( abs ‘ ( 𝑏 − 𝑎 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ↔ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑏 = 𝑤 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 99 |
|
fveq2 |
⊢ ( 𝑎 = 𝑢 → ( 𝐺 ‘ 𝑎 ) = ( 𝐺 ‘ 𝑢 ) ) |
| 100 |
98 99
|
oveqan12rd |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑤 ) → ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) = ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) |
| 101 |
100
|
fveq2d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 102 |
101
|
breq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑤 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 103 |
97 102
|
imbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑤 ) → ( ( ( abs ‘ ( 𝑏 − 𝑎 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) ) |
| 104 |
|
oveq12 |
⊢ ( ( 𝑏 = 𝑢 ∧ 𝑎 = 𝑤 ) → ( 𝑏 − 𝑎 ) = ( 𝑢 − 𝑤 ) ) |
| 105 |
104
|
ancoms |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑢 ) → ( 𝑏 − 𝑎 ) = ( 𝑢 − 𝑤 ) ) |
| 106 |
105
|
fveq2d |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑢 ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑢 − 𝑤 ) ) ) |
| 107 |
106
|
breq1d |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑢 ) → ( ( abs ‘ ( 𝑏 − 𝑎 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ↔ ( abs ‘ ( 𝑢 − 𝑤 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
| 108 |
|
fveq2 |
⊢ ( 𝑏 = 𝑢 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑢 ) ) |
| 109 |
|
fveq2 |
⊢ ( 𝑎 = 𝑤 → ( 𝐺 ‘ 𝑎 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 110 |
108 109
|
oveqan12rd |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑢 ) → ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) = ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) |
| 111 |
110
|
fveq2d |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑢 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 112 |
111
|
breq1d |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑢 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 113 |
107 112
|
imbi12d |
⊢ ( ( 𝑎 = 𝑤 ∧ 𝑏 = 𝑢 ) → ( ( ( abs ‘ ( 𝑏 − 𝑎 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑏 ) − ( 𝐺 ‘ 𝑎 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑢 − 𝑤 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 114 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 115 |
2 3 114
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 116 |
115
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 117 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → 𝜑 ) |
| 118 |
115 24
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 119 |
118
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ ℂ ) |
| 120 |
118
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑢 ∈ ℂ ) |
| 121 |
|
abssub |
⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) = ( abs ‘ ( 𝑢 − 𝑤 ) ) ) |
| 122 |
119 120 121
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) = ( abs ‘ ( 𝑢 − 𝑤 ) ) ) |
| 123 |
122
|
anandis |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) = ( abs ‘ ( 𝑢 − 𝑤 ) ) ) |
| 124 |
123
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ↔ ( abs ‘ ( 𝑢 − 𝑤 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
| 125 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ ℂ ) |
| 126 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑢 ) ∈ ℂ ) |
| 127 |
|
abssub |
⊢ ( ( ( 𝐺 ‘ 𝑤 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑢 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 128 |
125 126 127
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 129 |
128
|
anandis |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 130 |
129
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 131 |
124 130
|
imbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑢 − 𝑤 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 132 |
117 131
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑢 − 𝑤 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 133 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 134 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 135 |
133 134
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 136 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑡 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦 ) } ) |
| 137 |
136
|
elixx3g |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑢 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) ) |
| 138 |
137
|
simprbi |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) |
| 139 |
138
|
simpld |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ≤ 𝑢 ) |
| 140 |
136
|
elixx3g |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) ) |
| 141 |
140
|
simprbi |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) |
| 142 |
141
|
simprd |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → 𝑤 ≤ 𝐵 ) |
| 143 |
139 142
|
anim12i |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) |
| 144 |
|
ioossioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 145 |
135 143 144
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 146 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 147 |
145 146
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ 𝐷 ) |
| 148 |
147
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
| 149 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 150 |
149
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 151 |
150
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ* ) |
| 152 |
149
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 153 |
|
elxrge0 |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 154 |
151 152 153
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,] +∞ ) ) |
| 155 |
154
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,] +∞ ) ) |
| 156 |
148 155
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,] +∞ ) ) |
| 157 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 158 |
157
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 159 |
156 158
|
ifclda |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 161 |
160
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 162 |
|
itg2cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 163 |
161 162
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 164 |
163
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 165 |
117 164
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 166 |
165
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 167 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ) |
| 168 |
149
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 169 |
148 168
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 170 |
169
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 171 |
|
elioore |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → 𝑡 ∈ ℝ ) |
| 172 |
17
|
ffvelcdmda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
| 173 |
172
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
| 174 |
|
ax-icn |
⊢ i ∈ ℂ |
| 175 |
20
|
ffvelcdmda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) |
| 176 |
175
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) |
| 177 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 178 |
174 176 177
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 179 |
|
addcl |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ ℂ ∧ ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 180 |
173 178 179
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 181 |
180
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 182 |
171 181
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 183 |
182
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 184 |
183
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 185 |
170 184
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 186 |
185
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 187 |
182
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 188 |
187
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 189 |
188
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 190 |
186 189
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 191 |
190
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 192 |
185
|
absge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 193 |
181
|
absge0d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 194 |
171 193
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 195 |
194
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 196 |
195
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 197 |
186 189 192 196
|
addge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 198 |
|
elxrge0 |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 199 |
191 197 198
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 200 |
157
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 201 |
199 200
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 202 |
201
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 203 |
202
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 204 |
|
itg2cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 205 |
203 204
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 206 |
205
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 207 |
167 206
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 208 |
207
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 209 |
|
rpxr |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ* ) |
| 210 |
209
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → 𝑦 ∈ ℝ* ) |
| 211 |
159
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 212 |
211
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 213 |
212
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 214 |
170 184
|
npcand |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( 𝐹 ‘ 𝑡 ) ) |
| 215 |
214
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 216 |
185 184
|
abstrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 217 |
215 216
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 218 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 219 |
218
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 220 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 221 |
220
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 222 |
217 219 221
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 223 |
222
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 224 |
|
0le0 |
⊢ 0 ≤ 0 |
| 225 |
224
|
a1i |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → 0 ≤ 0 ) |
| 226 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = 0 ) |
| 227 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = 0 ) |
| 228 |
225 226 227
|
3brtr4d |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 229 |
223 228
|
pm2.61d1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 230 |
229
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 231 |
|
reex |
⊢ ℝ ∈ V |
| 232 |
231
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 233 |
|
fvex |
⊢ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ V |
| 234 |
|
c0ex |
⊢ 0 ∈ V |
| 235 |
233 234
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ V |
| 236 |
235
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ V ) |
| 237 |
|
ovex |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ V |
| 238 |
237 234
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V |
| 239 |
238
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V ) |
| 240 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 241 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 242 |
232 236 239 240 241
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 243 |
242
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 244 |
230 243
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 245 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 246 |
213 203 244 245
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 247 |
246
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 248 |
167 247
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 249 |
248
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 250 |
1 2 3 4 5 6 7 8
|
ftc1anclem8 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < 𝑦 ) |
| 251 |
166 208 210 249 250
|
xrlelttrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < 𝑦 ) |
| 252 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → 𝜑 ) |
| 253 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 254 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑤 ) ) |
| 255 |
|
itgeq1 |
⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑤 ) → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 256 |
254 255
|
syl |
⊢ ( 𝑥 = 𝑤 → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 257 |
|
itgex |
⊢ ∫ ( 𝐴 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ V |
| 258 |
256 1 257
|
fvmpt |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐺 ‘ 𝑤 ) = ∫ ( 𝐴 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 259 |
253 258
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) = ∫ ( 𝐴 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 260 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝐴 ∈ ℝ ) |
| 261 |
115
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ ℝ ) |
| 262 |
261
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝑤 ∈ ℝ ) |
| 263 |
115
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑢 ∈ ℝ ) |
| 264 |
263
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑢 ∈ ℝ* ) |
| 265 |
264
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝑢 ∈ ℝ* ) |
| 266 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑢 ∈ ℝ* ∧ 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) ) |
| 267 |
133 134 266
|
syl2anc |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑢 ∈ ℝ* ∧ 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) ) |
| 268 |
267
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑢 ∈ ℝ* ∧ 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) |
| 269 |
268
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑢 ) |
| 270 |
269
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝐴 ≤ 𝑢 ) |
| 271 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝑢 ≤ 𝑤 ) |
| 272 |
133
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 273 |
261
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ ℝ* ) |
| 274 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑢 ∈ ( 𝐴 [,] 𝑤 ) ↔ ( 𝑢 ∈ ℝ* ∧ 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝑤 ) ) ) |
| 275 |
272 273 274
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑢 ∈ ( 𝐴 [,] 𝑤 ) ↔ ( 𝑢 ∈ ℝ* ∧ 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝑤 ) ) ) |
| 276 |
275
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑢 ∈ ( 𝐴 [,] 𝑤 ) ↔ ( 𝑢 ∈ ℝ* ∧ 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝑤 ) ) ) |
| 277 |
265 270 271 276
|
mpbir3and |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝑢 ∈ ( 𝐴 [,] 𝑤 ) ) |
| 278 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ≤ 𝐵 ) → ( 𝐴 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 279 |
134 142 278
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 280 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 281 |
279 280
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑤 ) ⊆ 𝐷 ) |
| 282 |
281
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝐴 (,) 𝑤 ) ⊆ 𝐷 ) |
| 283 |
282
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
| 284 |
149
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 285 |
283 284
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 286 |
|
eleq1w |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 287 |
286
|
anbi2d |
⊢ ( 𝑤 = 𝑢 → ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 288 |
|
oveq2 |
⊢ ( 𝑤 = 𝑢 → ( 𝐴 (,) 𝑤 ) = ( 𝐴 (,) 𝑢 ) ) |
| 289 |
288
|
mpteq1d |
⊢ ( 𝑤 = 𝑢 → ( 𝑡 ∈ ( 𝐴 (,) 𝑤 ) ↦ ( 𝐹 ‘ 𝑡 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝑢 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 290 |
289
|
eleq1d |
⊢ ( 𝑤 = 𝑢 → ( ( 𝑡 ∈ ( 𝐴 (,) 𝑤 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ↔ ( 𝑡 ∈ ( 𝐴 (,) 𝑢 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) ) |
| 291 |
287 290
|
imbi12d |
⊢ ( 𝑤 = 𝑢 → ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑤 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) ↔ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑢 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) ) ) |
| 292 |
|
ioombl |
⊢ ( 𝐴 (,) 𝑤 ) ∈ dom vol |
| 293 |
292
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑤 ) ∈ dom vol ) |
| 294 |
149
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 295 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 296 |
295 7
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 297 |
296
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 298 |
281 293 294 297
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑤 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 299 |
291 298
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑢 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 300 |
299
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑢 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 301 |
|
ioombl |
⊢ ( 𝑢 (,) 𝑤 ) ∈ dom vol |
| 302 |
301
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ∈ dom vol ) |
| 303 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) |
| 304 |
296
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 305 |
147 302 303 304
|
iblss |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 306 |
305
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 307 |
260 262 277 285 300 306
|
itgsplitioo |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ∫ ( 𝐴 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ( ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 308 |
259 307
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) = ( ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 309 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 310 |
|
oveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑢 ) ) |
| 311 |
|
itgeq1 |
⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑢 ) → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 312 |
310 311
|
syl |
⊢ ( 𝑥 = 𝑢 → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 313 |
|
itgex |
⊢ ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ V |
| 314 |
312 1 313
|
fvmpt |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐺 ‘ 𝑢 ) = ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 315 |
309 314
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝐺 ‘ 𝑢 ) = ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 316 |
308 315
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) = ( ( ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 317 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑢 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) |
| 318 |
317 299
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 319 |
318
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 320 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) |
| 321 |
320 305
|
itgcl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 322 |
319 321
|
pncan2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) = ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 323 |
322
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑢 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) = ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 324 |
316 323
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) = ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 325 |
324
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) = ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 326 |
|
df-ov |
⊢ ( 𝑢 (,) 𝑤 ) = ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) |
| 327 |
|
opelxpi |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 〈 𝑢 , 𝑤 〉 ∈ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) |
| 328 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 329 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 330 |
328 329
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 331 |
|
iccssxr |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ* |
| 332 |
|
xpss12 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ* ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ⊆ ( ℝ* × ℝ* ) ) |
| 333 |
331 331 332
|
mp2an |
⊢ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ⊆ ( ℝ* × ℝ* ) |
| 334 |
|
fnfvima |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ⊆ ( ℝ* × ℝ* ) ∧ 〈 𝑢 , 𝑤 〉 ∈ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) → ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) ∈ ( (,) “ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) |
| 335 |
330 333 334
|
mp3an12 |
⊢ ( 〈 𝑢 , 𝑤 〉 ∈ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) → ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) ∈ ( (,) “ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) |
| 336 |
327 335
|
syl |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) ∈ ( (,) “ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) |
| 337 |
326 336
|
eqeltrid |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑢 (,) 𝑤 ) ∈ ( (,) “ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) |
| 338 |
|
itgeq1 |
⊢ ( 𝑠 = ( 𝑢 (,) 𝑤 ) → ∫ 𝑠 ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 339 |
338
|
fveq2d |
⊢ ( 𝑠 = ( 𝑢 (,) 𝑤 ) → ( abs ‘ ∫ 𝑠 ( 𝐹 ‘ 𝑡 ) d 𝑡 ) = ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 340 |
|
eleq2 |
⊢ ( 𝑠 = ( 𝑢 (,) 𝑤 ) → ( 𝑡 ∈ 𝑠 ↔ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) ) |
| 341 |
340
|
ifbid |
⊢ ( 𝑠 = ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ 𝑠 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) |
| 342 |
341
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑢 (,) 𝑤 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝑠 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 343 |
342
|
fveq2d |
⊢ ( 𝑠 = ( 𝑢 (,) 𝑤 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝑠 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 344 |
339 343
|
breq12d |
⊢ ( 𝑠 = ( 𝑢 (,) 𝑤 ) → ( ( abs ‘ ∫ 𝑠 ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝑠 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ↔ ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) ) |
| 345 |
344
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ( (,) “ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ( abs ‘ ∫ 𝑠 ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝑠 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∧ ( 𝑢 (,) 𝑤 ) ∈ ( (,) “ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) → ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 346 |
9 337 345
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 347 |
346
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 348 |
325 347
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 349 |
348
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 350 |
|
subcl |
⊢ ( ( ( 𝐺 ‘ 𝑤 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑢 ) ∈ ℂ ) → ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ∈ ℂ ) |
| 351 |
125 126 350
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ∈ ℂ ) |
| 352 |
351
|
anandis |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ∈ ℂ ) |
| 353 |
352
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ ) |
| 354 |
353
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ* ) |
| 355 |
354
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ* ) |
| 356 |
355
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ* ) |
| 357 |
164
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 358 |
209
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → 𝑦 ∈ ℝ* ) |
| 359 |
|
xrlelttr |
⊢ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ* ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 360 |
356 357 358 359
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 361 |
349 360
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 362 |
252 361
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 363 |
362
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 364 |
251 363
|
mpd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) |
| 365 |
364
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 366 |
103 113 116 132 365
|
wlogle |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 367 |
366
|
anassrs |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 368 |
93 367
|
sylanb |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 369 |
368
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 370 |
|
breq2 |
⊢ ( 𝑧 = ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
| 371 |
370
|
rspceaimv |
⊢ ( ( ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ∧ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 372 |
82 369 371
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 373 |
|
ralnex |
⊢ ( ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ¬ 𝑟 ≠ 0 ↔ ¬ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) |
| 374 |
|
nne |
⊢ ( ¬ 𝑟 ≠ 0 ↔ 𝑟 = 0 ) |
| 375 |
374
|
ralbii |
⊢ ( ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ¬ 𝑟 ≠ 0 ↔ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) |
| 376 |
373 375
|
bitr3i |
⊢ ( ¬ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ↔ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) |
| 377 |
17
|
ffnd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 Fn ℝ ) |
| 378 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 ) |
| 379 |
377 378
|
sylan |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 ) |
| 380 |
|
elun1 |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 381 |
379 380
|
syl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 382 |
|
eqeq1 |
⊢ ( 𝑟 = ( 𝑓 ‘ 𝑡 ) → ( 𝑟 = 0 ↔ ( 𝑓 ‘ 𝑡 ) = 0 ) ) |
| 383 |
382
|
rspcva |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( 𝑓 ‘ 𝑡 ) = 0 ) |
| 384 |
381 383
|
sylan |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( 𝑓 ‘ 𝑡 ) = 0 ) |
| 385 |
384
|
adantllr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( 𝑓 ‘ 𝑡 ) = 0 ) |
| 386 |
20
|
ffnd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 Fn ℝ ) |
| 387 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 ) |
| 388 |
386 387
|
sylan |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 ) |
| 389 |
|
elun2 |
⊢ ( ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 390 |
388 389
|
syl |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 391 |
|
eqeq1 |
⊢ ( 𝑟 = ( 𝑔 ‘ 𝑡 ) → ( 𝑟 = 0 ↔ ( 𝑔 ‘ 𝑡 ) = 0 ) ) |
| 392 |
391
|
rspcva |
⊢ ( ( ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( 𝑔 ‘ 𝑡 ) = 0 ) |
| 393 |
392
|
oveq2d |
⊢ ( ( ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( i · ( 𝑔 ‘ 𝑡 ) ) = ( i · 0 ) ) |
| 394 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
| 395 |
393 394
|
eqtrdi |
⊢ ( ( ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( i · ( 𝑔 ‘ 𝑡 ) ) = 0 ) |
| 396 |
390 395
|
sylan |
⊢ ( ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( i · ( 𝑔 ‘ 𝑡 ) ) = 0 ) |
| 397 |
396
|
adantlll |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( i · ( 𝑔 ‘ 𝑡 ) ) = 0 ) |
| 398 |
385 397
|
oveq12d |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( 0 + 0 ) ) |
| 399 |
398
|
an32s |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( 0 + 0 ) ) |
| 400 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 401 |
399 400
|
eqtrdi |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) = 0 ) |
| 402 |
401
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) = 0 ) |
| 403 |
402
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − 0 ) ) |
| 404 |
|
0cnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℂ ) |
| 405 |
149 404
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ∈ ℂ ) |
| 406 |
405
|
subid1d |
⊢ ( 𝜑 → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − 0 ) = if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) |
| 407 |
406
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − 0 ) = if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) |
| 408 |
403 407
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) |
| 409 |
408
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( abs ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
| 410 |
|
fvif |
⊢ ( abs ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , ( abs ‘ 0 ) ) |
| 411 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 412 |
|
ifeq2 |
⊢ ( ( abs ‘ 0 ) = 0 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , ( abs ‘ 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) |
| 413 |
411 412
|
ax-mp |
⊢ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , ( abs ‘ 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) |
| 414 |
410 413
|
eqtri |
⊢ ( abs ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) |
| 415 |
409 414
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) |
| 416 |
415
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 417 |
416
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 418 |
417
|
breq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ) |
| 419 |
418
|
biimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ) |
| 420 |
419
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ) ) |
| 421 |
420
|
com23 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) → ( ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ) ) |
| 422 |
421
|
imp32 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 423 |
422
|
anasss |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 424 |
423
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 425 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 426 |
425
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
| 427 |
352
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ∈ ℂ ) |
| 428 |
427
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ ) |
| 429 |
428
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ ) |
| 430 |
429
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ ) |
| 431 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
| 432 |
431
|
rehalfcld |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ ) |
| 433 |
432
|
adantl |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 434 |
433
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 435 |
431
|
adantl |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
| 436 |
435
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 437 |
430
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ* ) |
| 438 |
157
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 439 |
154 438
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 440 |
439
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 441 |
440
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 442 |
|
itg2cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 443 |
441 442
|
syl |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 444 |
443
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 445 |
434
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 / 2 ) ∈ ℝ* ) |
| 446 |
109 108
|
oveqan12rd |
⊢ ( ( 𝑏 = 𝑢 ∧ 𝑎 = 𝑤 ) → ( ( 𝐺 ‘ 𝑎 ) − ( 𝐺 ‘ 𝑏 ) ) = ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) |
| 447 |
446
|
fveq2d |
⊢ ( ( 𝑏 = 𝑢 ∧ 𝑎 = 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑎 ) − ( 𝐺 ‘ 𝑏 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 448 |
447
|
breq1d |
⊢ ( ( 𝑏 = 𝑢 ∧ 𝑎 = 𝑤 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑎 ) − ( 𝐺 ‘ 𝑏 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) ) |
| 449 |
99 98
|
oveqan12rd |
⊢ ( ( 𝑏 = 𝑤 ∧ 𝑎 = 𝑢 ) → ( ( 𝐺 ‘ 𝑎 ) − ( 𝐺 ‘ 𝑏 ) ) = ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) |
| 450 |
449
|
fveq2d |
⊢ ( ( 𝑏 = 𝑤 ∧ 𝑎 = 𝑢 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑎 ) − ( 𝐺 ‘ 𝑏 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 451 |
450
|
breq1d |
⊢ ( ( 𝑏 = 𝑤 ∧ 𝑎 = 𝑢 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑎 ) − ( 𝐺 ‘ 𝑏 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) ) |
| 452 |
129
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑢 ) − ( 𝐺 ‘ 𝑤 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) ) |
| 453 |
321
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ∈ ℝ ) |
| 454 |
453
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ∈ ℝ* ) |
| 455 |
443
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ* ) |
| 456 |
441
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 457 |
|
breq2 |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 458 |
|
breq2 |
⊢ ( 0 = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ 0 ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 459 |
150
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 460 |
|
breq1 |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 461 |
|
breq1 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 462 |
460 461
|
ifboth |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 463 |
459 152 462
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 464 |
463
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 465 |
147
|
ssneld |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ¬ 𝑡 ∈ 𝐷 → ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) ) |
| 466 |
465
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ 𝐷 ) → ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) |
| 467 |
226 224
|
eqbrtrdi |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ 0 ) |
| 468 |
466 467
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ 0 ) |
| 469 |
457 458 464 468
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) |
| 470 |
469
|
ralrimivw |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) |
| 471 |
233 234
|
ifex |
⊢ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ V |
| 472 |
471
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ V ) |
| 473 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 474 |
232 236 472 240 473
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 475 |
474
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 476 |
470 475
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 477 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 478 |
161 456 476 477
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 479 |
454 163 455 346 478
|
xrletrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 480 |
479
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ∫ ( 𝑢 (,) 𝑤 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 481 |
325 480
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 482 |
448 451 115 452 481
|
wlogle |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 483 |
482
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 484 |
483
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 485 |
484
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ) |
| 486 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 487 |
437 444 445 485 486
|
xrlelttrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < ( 𝑦 / 2 ) ) |
| 488 |
|
rphalflt |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) < 𝑦 ) |
| 489 |
488
|
adantl |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) < 𝑦 ) |
| 490 |
489
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 / 2 ) < 𝑦 ) |
| 491 |
430 434 436 487 490
|
lttrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) |
| 492 |
491
|
a1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 493 |
492
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) → ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 494 |
493
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) → ∀ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 495 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 496 |
426 494 495
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 497 |
424 496
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 498 |
497
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 499 |
498
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∀ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 = 0 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 500 |
376 499
|
sylan2b |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ¬ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 501 |
372 500
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 502 |
501
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) ) |
| 503 |
502
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) → ( ∃ 𝑓 ∈ dom ∫1 ∃ 𝑔 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) ) |
| 504 |
14 503
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 505 |
504
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) |
| 506 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 507 |
|
elcncf2 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) ) ) |
| 508 |
118 506 507
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑤 − 𝑢 ) ) < 𝑧 → ( abs ‘ ( ( 𝐺 ‘ 𝑤 ) − ( 𝐺 ‘ 𝑢 ) ) ) < 𝑦 ) ) ) ) |
| 509 |
10 505 508
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |