| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1anc.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 2 |
|
ftc1anc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
ftc1anc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
ftc1anc.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
|
ftc1anc.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ftc1anc.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 7 |
|
ftc1anc.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
| 8 |
|
ftc1anc.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 9 |
1 2 3 4 5 6 7 8
|
ftc1anclem7 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) < ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) ) |
| 10 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ) |
| 11 |
|
3simpa |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 12 |
|
ioossre |
⊢ ( 𝑢 (,) 𝑤 ) ⊆ ℝ |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ℝ ) |
| 14 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ℝ ∈ dom vol ) |
| 16 |
|
fvex |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ V |
| 17 |
|
c0ex |
⊢ 0 ∈ V |
| 18 |
16 17
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V |
| 19 |
18
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V ) |
| 20 |
|
eldifn |
⊢ ( 𝑡 ∈ ( ℝ ∖ ( 𝑢 (,) 𝑤 ) ) → ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( ℝ ∖ ( 𝑢 (,) 𝑤 ) ) ) → ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) |
| 22 |
21
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( ℝ ∖ ( 𝑢 (,) 𝑤 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = 0 ) |
| 23 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 24 |
23
|
mpteq2ia |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 25 |
|
resmpt |
⊢ ( ( 𝑢 (,) 𝑤 ) ⊆ ℝ → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↾ ( 𝑢 (,) 𝑤 ) ) = ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 26 |
12 25
|
ax-mp |
⊢ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↾ ( 𝑢 (,) 𝑤 ) ) = ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 27 |
24 26
|
eqtr4i |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↾ ( 𝑢 (,) 𝑤 ) ) |
| 28 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
| 29 |
28
|
ffvelcdmda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
| 30 |
29
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
| 31 |
|
ax-icn |
⊢ i ∈ ℂ |
| 32 |
|
i1ff |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 : ℝ ⟶ ℝ ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) |
| 35 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 36 |
31 34 35
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 37 |
|
addcl |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ ℂ ∧ ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 38 |
30 36 37
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 39 |
38
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 40 |
|
reex |
⊢ ℝ ∈ V |
| 41 |
40
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 42 |
29
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
| 43 |
36
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 44 |
28
|
feqmptd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 = ( 𝑡 ∈ ℝ ↦ ( 𝑓 ‘ 𝑡 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 𝑓 = ( 𝑡 ∈ ℝ ↦ ( 𝑓 ‘ 𝑡 ) ) ) |
| 46 |
40
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ℝ ∈ V ) |
| 47 |
31
|
a1i |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → i ∈ ℂ ) |
| 48 |
|
fconstmpt |
⊢ ( ℝ × { i } ) = ( 𝑡 ∈ ℝ ↦ i ) |
| 49 |
48
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ( ℝ × { i } ) = ( 𝑡 ∈ ℝ ↦ i ) ) |
| 50 |
32
|
feqmptd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 = ( 𝑡 ∈ ℝ ↦ ( 𝑔 ‘ 𝑡 ) ) ) |
| 51 |
46 47 33 49 50
|
offval2 |
⊢ ( 𝑔 ∈ dom ∫1 → ( ( ℝ × { i } ) ∘f · 𝑔 ) = ( 𝑡 ∈ ℝ ↦ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( ℝ × { i } ) ∘f · 𝑔 ) = ( 𝑡 ∈ ℝ ↦ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 53 |
41 42 43 45 52
|
offval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 54 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 55 |
54
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → abs : ℂ ⟶ ℝ ) |
| 56 |
55
|
feqmptd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑥 = ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 58 |
39 53 56 57
|
fmptco |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 59 |
|
ftc1anclem3 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ∈ dom ∫1 ) |
| 60 |
58 59
|
eqeltrrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ dom ∫1 ) |
| 61 |
|
i1fmbf |
⊢ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ MblFn ) |
| 62 |
60 61
|
syl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ MblFn ) |
| 63 |
|
ioombl |
⊢ ( 𝑢 (,) 𝑤 ) ∈ dom vol |
| 64 |
|
mbfres |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ MblFn ∧ ( 𝑢 (,) 𝑤 ) ∈ dom vol ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↾ ( 𝑢 (,) 𝑤 ) ) ∈ MblFn ) |
| 65 |
62 63 64
|
sylancl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↾ ( 𝑢 (,) 𝑤 ) ) ∈ MblFn ) |
| 66 |
27 65
|
eqeltrid |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ MblFn ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ MblFn ) |
| 68 |
13 15 19 22 67
|
mbfss |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ MblFn ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ MblFn ) |
| 70 |
39
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 71 |
39
|
absge0d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 72 |
|
elrege0 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 73 |
70 71 72
|
sylanbrc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 74 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 75 |
|
ifcl |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,) +∞ ) ∧ 0 ∈ ( 0 [,) +∞ ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 76 |
73 74 75
|
sylancl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 77 |
76
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 78 |
77
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 79 |
70
|
rexrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ* ) |
| 80 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 81 |
79 71 80
|
sylanbrc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 82 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 83 |
|
ifcl |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 84 |
81 82 83
|
sylancl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 85 |
84
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 86 |
85
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 87 |
|
ifcl |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 88 |
81 82 87
|
sylancl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 89 |
88
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 90 |
|
ffn |
⊢ ( 𝑓 : ℝ ⟶ ℝ → 𝑓 Fn ℝ ) |
| 91 |
|
frn |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ran 𝑓 ⊆ ℝ ) |
| 92 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 93 |
91 92
|
sstrdi |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ran 𝑓 ⊆ ℂ ) |
| 94 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 95 |
54 94
|
ax-mp |
⊢ abs Fn ℂ |
| 96 |
|
fnco |
⊢ ( ( abs Fn ℂ ∧ 𝑓 Fn ℝ ∧ ran 𝑓 ⊆ ℂ ) → ( abs ∘ 𝑓 ) Fn ℝ ) |
| 97 |
95 96
|
mp3an1 |
⊢ ( ( 𝑓 Fn ℝ ∧ ran 𝑓 ⊆ ℂ ) → ( abs ∘ 𝑓 ) Fn ℝ ) |
| 98 |
90 93 97
|
syl2anc |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( abs ∘ 𝑓 ) Fn ℝ ) |
| 99 |
28 98
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( abs ∘ 𝑓 ) Fn ℝ ) |
| 100 |
99
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ 𝑓 ) Fn ℝ ) |
| 101 |
|
ffn |
⊢ ( 𝑔 : ℝ ⟶ ℝ → 𝑔 Fn ℝ ) |
| 102 |
|
frn |
⊢ ( 𝑔 : ℝ ⟶ ℝ → ran 𝑔 ⊆ ℝ ) |
| 103 |
102 92
|
sstrdi |
⊢ ( 𝑔 : ℝ ⟶ ℝ → ran 𝑔 ⊆ ℂ ) |
| 104 |
|
fnco |
⊢ ( ( abs Fn ℂ ∧ 𝑔 Fn ℝ ∧ ran 𝑔 ⊆ ℂ ) → ( abs ∘ 𝑔 ) Fn ℝ ) |
| 105 |
95 104
|
mp3an1 |
⊢ ( ( 𝑔 Fn ℝ ∧ ran 𝑔 ⊆ ℂ ) → ( abs ∘ 𝑔 ) Fn ℝ ) |
| 106 |
101 103 105
|
syl2anc |
⊢ ( 𝑔 : ℝ ⟶ ℝ → ( abs ∘ 𝑔 ) Fn ℝ ) |
| 107 |
32 106
|
syl |
⊢ ( 𝑔 ∈ dom ∫1 → ( abs ∘ 𝑔 ) Fn ℝ ) |
| 108 |
107
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ 𝑔 ) Fn ℝ ) |
| 109 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 110 |
28
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 𝑓 : ℝ ⟶ ℝ ) |
| 111 |
|
fvco3 |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( ( abs ∘ 𝑓 ) ‘ 𝑡 ) = ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ) |
| 112 |
110 111
|
sylan |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ∘ 𝑓 ) ‘ 𝑡 ) = ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ) |
| 113 |
32
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 𝑔 : ℝ ⟶ ℝ ) |
| 114 |
|
fvco3 |
⊢ ( ( 𝑔 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( ( abs ∘ 𝑔 ) ‘ 𝑡 ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 115 |
113 114
|
sylan |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ∘ 𝑔 ) ‘ 𝑡 ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 116 |
100 108 41 41 109 112 115
|
offval |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( abs ∘ 𝑓 ) ∘f + ( abs ∘ 𝑔 ) ) = ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 117 |
30
|
addridd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + 0 ) = ( 𝑓 ‘ 𝑡 ) ) |
| 118 |
117
|
mpteq2dva |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑡 ) + 0 ) ) = ( 𝑡 ∈ ℝ ↦ ( 𝑓 ‘ 𝑡 ) ) ) |
| 119 |
40
|
a1i |
⊢ ( 𝑓 ∈ dom ∫1 → ℝ ∈ V ) |
| 120 |
17
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → 0 ∈ V ) |
| 121 |
31
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → i ∈ ℂ ) |
| 122 |
48
|
a1i |
⊢ ( 𝑓 ∈ dom ∫1 → ( ℝ × { i } ) = ( 𝑡 ∈ ℝ ↦ i ) ) |
| 123 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) |
| 124 |
123
|
a1i |
⊢ ( 𝑓 ∈ dom ∫1 → ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) ) |
| 125 |
119 121 120 122 124
|
offval2 |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ℝ × { i } ) ∘f · ( ℝ × { 0 } ) ) = ( 𝑡 ∈ ℝ ↦ ( i · 0 ) ) ) |
| 126 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
| 127 |
126
|
mpteq2i |
⊢ ( 𝑡 ∈ ℝ ↦ ( i · 0 ) ) = ( 𝑡 ∈ ℝ ↦ 0 ) |
| 128 |
125 127
|
eqtrdi |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ℝ × { i } ) ∘f · ( ℝ × { 0 } ) ) = ( 𝑡 ∈ ℝ ↦ 0 ) ) |
| 129 |
119 29 120 44 128
|
offval2 |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · ( ℝ × { 0 } ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑡 ) + 0 ) ) ) |
| 130 |
118 129 44
|
3eqtr4d |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · ( ℝ × { 0 } ) ) ) = 𝑓 ) |
| 131 |
130
|
coeq2d |
⊢ ( 𝑓 ∈ dom ∫1 → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · ( ℝ × { 0 } ) ) ) ) = ( abs ∘ 𝑓 ) ) |
| 132 |
|
i1f0 |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |
| 133 |
|
ftc1anclem3 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( ℝ × { 0 } ) ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · ( ℝ × { 0 } ) ) ) ) ∈ dom ∫1 ) |
| 134 |
132 133
|
mpan2 |
⊢ ( 𝑓 ∈ dom ∫1 → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · ( ℝ × { 0 } ) ) ) ) ∈ dom ∫1 ) |
| 135 |
131 134
|
eqeltrrd |
⊢ ( 𝑓 ∈ dom ∫1 → ( abs ∘ 𝑓 ) ∈ dom ∫1 ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ 𝑓 ) ∈ dom ∫1 ) |
| 137 |
|
coeq2 |
⊢ ( 𝑓 = 𝑔 → ( abs ∘ 𝑓 ) = ( abs ∘ 𝑔 ) ) |
| 138 |
137
|
eleq1d |
⊢ ( 𝑓 = 𝑔 → ( ( abs ∘ 𝑓 ) ∈ dom ∫1 ↔ ( abs ∘ 𝑔 ) ∈ dom ∫1 ) ) |
| 139 |
138 135
|
vtoclga |
⊢ ( 𝑔 ∈ dom ∫1 → ( abs ∘ 𝑔 ) ∈ dom ∫1 ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ 𝑔 ) ∈ dom ∫1 ) |
| 141 |
136 140
|
i1fadd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( abs ∘ 𝑓 ) ∘f + ( abs ∘ 𝑔 ) ) ∈ dom ∫1 ) |
| 142 |
116 141
|
eqeltrrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ dom ∫1 ) |
| 143 |
30
|
abscld |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ) |
| 144 |
30
|
absge0d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ) |
| 145 |
|
elrege0 |
⊢ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 146 |
143 144 145
|
sylanbrc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ) |
| 147 |
34
|
abscld |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) |
| 148 |
34
|
absge0d |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 149 |
|
elrege0 |
⊢ ( ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 150 |
147 148 149
|
sylanbrc |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ) |
| 151 |
|
ge0addcl |
⊢ ( ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ∧ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 152 |
146 150 151
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 153 |
152
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 154 |
153
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 155 |
|
0plef |
⊢ ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 156 |
154 155
|
sylib |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 157 |
156
|
simprd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 158 |
|
itg2itg1 |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 159 |
|
itg1cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 160 |
159
|
adantr |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 161 |
158 160
|
eqeltrd |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 162 |
142 157 161
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 163 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 164 |
|
fss |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 165 |
154 163 164
|
sylancl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 166 |
|
0re |
⊢ 0 ∈ ℝ |
| 167 |
|
ifcl |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ℝ ) |
| 168 |
70 166 167
|
sylancl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ℝ ) |
| 169 |
|
readdcl |
⊢ ( ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 170 |
143 147 169
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 171 |
170
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 172 |
70
|
leidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 173 |
|
breq1 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ↔ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 174 |
|
breq1 |
⊢ ( 0 = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ↔ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 175 |
173 174
|
ifboth |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∧ 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 176 |
172 71 175
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 177 |
|
abstri |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ ℂ ∧ ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 178 |
30 36 177
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 179 |
178
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 180 |
|
absmul |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 181 |
31 34 180
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 182 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
| 183 |
182
|
oveq1i |
⊢ ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) = ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 184 |
181 183
|
eqtrdi |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 185 |
147
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 186 |
185
|
mullidd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 187 |
184 186
|
eqtrd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 188 |
187
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 189 |
188
|
oveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 190 |
179 189
|
breqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 191 |
168 70 171 176 190
|
letrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 192 |
191
|
ralrimiva |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 193 |
|
eqidd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 194 |
|
eqidd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 195 |
41 168 171 193 194
|
ofrfval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 196 |
192 195
|
mpbird |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 197 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 198 |
89 165 196 197
|
syl3anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 199 |
|
itg2lecl |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 200 |
89 162 198 199
|
syl3anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 201 |
200
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 202 |
89
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 203 |
|
breq1 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 204 |
|
breq1 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 205 |
|
elioore |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → 𝑡 ∈ ℝ ) |
| 206 |
205 172
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 207 |
206
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 208 |
207
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 209 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 210 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 211 |
209 210
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 212 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑡 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦 ) } ) |
| 213 |
212
|
elixx3g |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑢 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) ) |
| 214 |
213
|
simprbi |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) |
| 215 |
214
|
simpld |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ≤ 𝑢 ) |
| 216 |
212
|
elixx3g |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) ) |
| 217 |
216
|
simprbi |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) |
| 218 |
217
|
simprd |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → 𝑤 ≤ 𝐵 ) |
| 219 |
215 218
|
anim12i |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) |
| 220 |
|
ioossioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 221 |
211 219 220
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 222 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 223 |
221 222
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ 𝐷 ) |
| 224 |
223
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
| 225 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 226 |
224 225
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 227 |
226
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 228 |
208 227
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 229 |
|
breq2 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ↔ 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 230 |
|
breq2 |
⊢ ( 0 = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 231 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ ℝ ) |
| 232 |
231
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ ℝ ) |
| 233 |
71
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 234 |
232 233
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 235 |
|
0le0 |
⊢ 0 ≤ 0 |
| 236 |
235
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ≤ 0 ) |
| 237 |
229 230 234 236
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 238 |
237
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 239 |
203 204 228 238
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 240 |
239
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 241 |
40
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 242 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V ) |
| 243 |
16 17
|
ifex |
⊢ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V |
| 244 |
243
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V ) |
| 245 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 246 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 247 |
241 242 244 245 246
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 248 |
247
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 249 |
240 248
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 250 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ) |
| 251 |
86 202 249 250
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ) |
| 252 |
|
itg2lecl |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 253 |
86 201 251 252
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 254 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 255 |
254
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 256 |
224 255
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 257 |
256
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 258 |
205 39
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 259 |
258
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 260 |
259
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 261 |
257 260
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 262 |
261
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 263 |
261
|
absge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 264 |
|
elrege0 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 265 |
262 263 264
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 266 |
74
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 267 |
265 266
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 268 |
267
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 269 |
268
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 270 |
262
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 271 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 272 |
270 263 271
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 273 |
82
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 274 |
272 273
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 275 |
274
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 276 |
275
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 277 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
| 278 |
|
prid1g |
⊢ ( ℜ ∈ ( ℂ –cn→ ℝ ) → ℜ ∈ { ℜ , ℑ } ) |
| 279 |
277 278
|
ax-mp |
⊢ ℜ ∈ { ℜ , ℑ } |
| 280 |
|
ftc1anclem2 |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℜ ∈ { ℜ , ℑ } ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 281 |
279 280
|
mp3an3 |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 282 |
8 7 281
|
syl2anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 283 |
|
imcncf |
⊢ ℑ ∈ ( ℂ –cn→ ℝ ) |
| 284 |
|
prid2g |
⊢ ( ℑ ∈ ( ℂ –cn→ ℝ ) → ℑ ∈ { ℜ , ℑ } ) |
| 285 |
283 284
|
ax-mp |
⊢ ℑ ∈ { ℜ , ℑ } |
| 286 |
|
ftc1anclem2 |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℑ ∈ { ℜ , ℑ } ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 287 |
285 286
|
mp3an3 |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℂ ∧ 𝐹 ∈ 𝐿1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 288 |
8 7 287
|
syl2anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 289 |
282 288
|
readdcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 290 |
289
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 291 |
201 290
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ∈ ℝ ) |
| 292 |
|
ge0addcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 293 |
292
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 294 |
|
ifcl |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,) +∞ ) ∧ 0 ∈ ( 0 [,) +∞ ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 295 |
73 74 294
|
sylancl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 296 |
295
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 297 |
296
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 298 |
292
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 299 |
254
|
recld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 300 |
299
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 301 |
300
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 302 |
300
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 303 |
|
elrege0 |
⊢ ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 304 |
301 302 303
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 305 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 306 |
304 305
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 307 |
306
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 308 |
307
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 309 |
254
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 310 |
309
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 311 |
310
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 312 |
310
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 313 |
|
elrege0 |
⊢ ( ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 314 |
311 312 313
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 315 |
314 305
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 316 |
315
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 317 |
316
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 318 |
298 308 317 241 241 109
|
off |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 319 |
318
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 320 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ℝ ∈ V ) |
| 321 |
293 297 319 320 320 109
|
off |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 322 |
|
fss |
⊢ ( ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 323 |
321 163 322
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 324 |
323
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 325 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 326 |
325
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ℝ* ) |
| 327 |
270 326
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ℝ* ) |
| 328 |
254
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 329 |
39
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 330 |
232 329
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 331 |
328 330
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 332 |
331
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 333 |
332
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 334 |
325
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℝ* ) |
| 335 |
333 334
|
ifclda |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ℝ* ) |
| 336 |
335
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ℝ* ) |
| 337 |
330
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 338 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℝ ) |
| 339 |
337 338
|
ifclda |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ℝ ) |
| 340 |
|
0red |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℝ ) |
| 341 |
301 340
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ℝ ) |
| 342 |
311 340
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ℝ ) |
| 343 |
341 342
|
readdcld |
⊢ ( 𝜑 → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∈ ℝ ) |
| 344 |
343
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∈ ℝ ) |
| 345 |
339 344
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 346 |
345
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 347 |
346
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 348 |
|
breq1 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 349 |
|
breq1 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 350 |
224
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
| 351 |
332
|
leidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 352 |
351
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 353 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 354 |
353
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 355 |
352 354
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 356 |
350 355
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 357 |
|
breq2 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↔ 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 358 |
|
breq2 |
⊢ ( 0 = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 359 |
331
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 360 |
357 358 359 236
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 361 |
360
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 362 |
348 349 356 361
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 363 |
254
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → - ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 364 |
363
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → - ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 365 |
330 364
|
addcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) + - ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 366 |
365
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) + - ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 367 |
363
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 368 |
367
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 369 |
337 368
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 370 |
301 311
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 371 |
370
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 372 |
337 371
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 373 |
330 364
|
abstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) + - ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 374 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 375 |
31 310 374
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 376 |
300 375
|
abstrid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) + ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ≤ ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 377 |
254
|
absnegd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 378 |
254
|
replimd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) = ( ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) + ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 379 |
378
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) = ( abs ‘ ( ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) + ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 380 |
377 379
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) = ( abs ‘ ( ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) + ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 381 |
|
absmul |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) → ( abs ‘ ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 382 |
31 310 381
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 383 |
182
|
oveq1i |
⊢ ( ( abs ‘ i ) · ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 1 · ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 384 |
382 383
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 1 · ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 385 |
311
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 386 |
385
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 1 · ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 387 |
384 386
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 388 |
387
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( i · ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 389 |
376 380 388
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) ≤ ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 390 |
389
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) ≤ ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 391 |
368 371 337 390
|
leadd2dd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ - ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 392 |
366 369 372 373 391
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) + - ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 393 |
328 330
|
abssubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( abs ‘ ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) − ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 394 |
353
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 395 |
330 328
|
negsubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) + - ( 𝐹 ‘ 𝑡 ) ) = ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) − ( 𝐹 ‘ 𝑡 ) ) ) |
| 396 |
395
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) + - ( 𝐹 ‘ 𝑡 ) ) ) = ( abs ‘ ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) − ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 397 |
393 394 396
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( abs ‘ ( ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) + - ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 398 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 399 |
398
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 400 |
392 397 399
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 401 |
400
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 402 |
235
|
a1i |
⊢ ( ¬ 𝑡 ∈ 𝐷 → 0 ≤ 0 ) |
| 403 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = 0 ) |
| 404 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) = 0 ) |
| 405 |
402 403 404
|
3brtr4d |
⊢ ( ¬ 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 406 |
401 405
|
pm2.61d1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 407 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 408 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 409 |
407 408
|
oveq12d |
⊢ ( 𝑡 ∈ 𝐷 → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 410 |
225 409
|
oveq12d |
⊢ ( 𝑡 ∈ 𝐷 → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 411 |
410 398
|
eqtr4d |
⊢ ( 𝑡 ∈ 𝐷 → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 412 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 413 |
412
|
oveq2i |
⊢ ( 0 + ( 0 + 0 ) ) = ( 0 + 0 ) |
| 414 |
413 412
|
eqtri |
⊢ ( 0 + ( 0 + 0 ) ) = 0 |
| 415 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = 0 ) |
| 416 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = 0 ) |
| 417 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) = 0 ) |
| 418 |
416 417
|
oveq12d |
⊢ ( ¬ 𝑡 ∈ 𝐷 → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( 0 + 0 ) ) |
| 419 |
415 418
|
oveq12d |
⊢ ( ¬ 𝑡 ∈ 𝐷 → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( 0 + ( 0 + 0 ) ) ) |
| 420 |
414 419 404
|
3eqtr4a |
⊢ ( ¬ 𝑡 ∈ 𝐷 → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 421 |
411 420
|
pm2.61i |
⊢ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = if ( 𝑡 ∈ 𝐷 , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) + ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) , 0 ) |
| 422 |
406 421
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 423 |
422
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 424 |
327 336 347 362 423
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 425 |
424
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 426 |
|
fvex |
⊢ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ V |
| 427 |
426 17
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V |
| 428 |
427
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V ) |
| 429 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ∈ V ) |
| 430 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 431 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∈ V ) |
| 432 |
341
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ℝ ) |
| 433 |
342
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ∈ ℝ ) |
| 434 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) |
| 435 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) |
| 436 |
241 432 433 434 435
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) |
| 437 |
241 244 431 246 436
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) |
| 438 |
241 428 429 430 437
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) |
| 439 |
438
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + ( if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) + if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) |
| 440 |
425 439
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) |
| 441 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) |
| 442 |
276 324 440 441
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) |
| 443 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → 𝐷 ⊆ ℝ ) |
| 444 |
243
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V ) |
| 445 |
|
eldifn |
⊢ ( 𝑡 ∈ ( ℝ ∖ 𝐷 ) → ¬ 𝑡 ∈ 𝐷 ) |
| 446 |
445
|
iffalsed |
⊢ ( 𝑡 ∈ ( ℝ ∖ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = 0 ) |
| 447 |
446
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( ℝ ∖ 𝐷 ) ) → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = 0 ) |
| 448 |
|
ovexd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ V ) |
| 449 |
41 42 448 45 52
|
offval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 450 |
39 449 56 57
|
fmptco |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 451 |
450
|
reseq1d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ↾ 𝐷 ) = ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↾ 𝐷 ) ) |
| 452 |
6
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↾ 𝐷 ) = ( 𝑡 ∈ 𝐷 ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 453 |
451 452
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ↾ 𝐷 ) = ( 𝑡 ∈ 𝐷 ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 454 |
225
|
mpteq2ia |
⊢ ( 𝑡 ∈ 𝐷 ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ 𝐷 ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 455 |
453 454
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ↾ 𝐷 ) = ( 𝑡 ∈ 𝐷 ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 456 |
|
i1fmbf |
⊢ ( ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ∈ dom ∫1 → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ∈ MblFn ) |
| 457 |
59 456
|
syl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ∈ MblFn ) |
| 458 |
8
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
| 459 |
|
iblmbf |
⊢ ( 𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn ) |
| 460 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 461 |
7 459 460
|
3syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 462 |
458 461
|
eqeltrrd |
⊢ ( 𝜑 → 𝐷 ∈ dom vol ) |
| 463 |
|
mbfres |
⊢ ( ( ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ∈ MblFn ∧ 𝐷 ∈ dom vol ) → ( ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ↾ 𝐷 ) ∈ MblFn ) |
| 464 |
457 462 463
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ↾ 𝐷 ) ∈ MblFn ) |
| 465 |
455 464
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ 𝐷 ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ MblFn ) |
| 466 |
443 15 444 447 465
|
mbfss |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ MblFn ) |
| 467 |
200
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 468 |
|
0cnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℂ ) |
| 469 |
300 468
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ℂ ) |
| 470 |
469
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ℂ ) |
| 471 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 472 |
54
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
| 473 |
472
|
feqmptd |
⊢ ( 𝜑 → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
| 474 |
|
fveq2 |
⊢ ( 𝑥 = if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) → ( abs ‘ 𝑥 ) = ( abs ‘ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) |
| 475 |
|
fvif |
⊢ ( abs ‘ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , ( abs ‘ 0 ) ) |
| 476 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 477 |
|
ifeq2 |
⊢ ( ( abs ‘ 0 ) = 0 → if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , ( abs ‘ 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) |
| 478 |
476 477
|
ax-mp |
⊢ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , ( abs ‘ 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) |
| 479 |
475 478
|
eqtri |
⊢ ( abs ‘ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) |
| 480 |
474 479
|
eqtrdi |
⊢ ( 𝑥 = if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) → ( abs ‘ 𝑥 ) = if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) |
| 481 |
470 471 473 480
|
fmptco |
⊢ ( 𝜑 → ( abs ∘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) |
| 482 |
299 340
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ℝ ) |
| 483 |
482
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ℝ ) |
| 484 |
483
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ℝ ) |
| 485 |
14
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 486 |
482
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ∈ ℝ ) |
| 487 |
445
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ℝ ∖ 𝐷 ) ) → ¬ 𝑡 ∈ 𝐷 ) |
| 488 |
487
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ℝ ∖ 𝐷 ) ) → if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = 0 ) |
| 489 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 490 |
489
|
mpteq2ia |
⊢ ( 𝑡 ∈ 𝐷 ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 491 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 492 |
7 459
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 493 |
491 492
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) |
| 494 |
254
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ↔ ( ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐷 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) ) |
| 495 |
493 494
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐷 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) |
| 496 |
495
|
simpld |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
| 497 |
490 496
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∈ MblFn ) |
| 498 |
6 485 486 488 497
|
mbfss |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∈ MblFn ) |
| 499 |
|
ftc1anclem1 |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) : ℝ ⟶ ℝ ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ∈ MblFn ) → ( abs ∘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ MblFn ) |
| 500 |
484 498 499
|
syl2anc |
⊢ ( 𝜑 → ( abs ∘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ MblFn ) |
| 501 |
481 500
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∈ MblFn ) |
| 502 |
501 308 282 317 288
|
itg2addnc |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) |
| 503 |
502 289
|
eqeltrd |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 504 |
503
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 505 |
466 297 467 319 504
|
itg2addnc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) |
| 506 |
502
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) |
| 507 |
506
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) |
| 508 |
505 507
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) |
| 509 |
508
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) |
| 510 |
442 509
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) |
| 511 |
|
itg2lecl |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ 𝐷 , ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) , 0 ) ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 512 |
276 291 510 511
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 513 |
69 78 253 269 512
|
itg2addnc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) ) |
| 514 |
241 242 428 245 430
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 515 |
|
eqeq2 |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) → ( ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ↔ ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) ) ) |
| 516 |
|
eqeq2 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) → ( ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = 0 ↔ ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) ) ) |
| 517 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 518 |
23 517
|
oveq12d |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 519 |
518
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 520 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = 0 ) |
| 521 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) = 0 ) |
| 522 |
520 521
|
oveq12d |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( 0 + 0 ) ) |
| 523 |
522 412
|
eqtrdi |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = 0 ) |
| 524 |
523
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = 0 ) |
| 525 |
515 516 519 524
|
ifbothda |
⊢ ( 𝜑 → ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) ) |
| 526 |
525
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) + if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) ) ) |
| 527 |
514 526
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) ) ) |
| 528 |
527
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) ) ) |
| 529 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) |
| 530 |
258
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 531 |
530
|
recnd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 532 |
529 531
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 533 |
262
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℂ ) |
| 534 |
532 533
|
addcomd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 535 |
534
|
ifeq1da |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) |
| 536 |
535
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) + ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 537 |
528 536
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 538 |
537
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 539 |
513 538
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 540 |
10 11 539
|
syl2an |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 541 |
540
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) |
| 542 |
|
rpcn |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) |
| 543 |
542
|
2halvesd |
⊢ ( 𝑦 ∈ ℝ+ → ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) = 𝑦 ) |
| 544 |
543
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) = 𝑦 ) |
| 545 |
9 541 544
|
3brtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) + ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < 𝑦 ) |