| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1anc.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 2 |
|
ftc1anc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
ftc1anc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
ftc1anc.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
|
ftc1anc.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ftc1anc.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 7 |
|
ftc1anc.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
| 8 |
|
ftc1anc.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 9 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
| 10 |
9
|
ffvelcdmda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 12 |
|
ax-icn |
⊢ i ∈ ℂ |
| 13 |
|
i1ff |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 : ℝ ⟶ ℝ ) |
| 14 |
13
|
ffvelcdmda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℂ ) |
| 16 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℂ ) → ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ ℂ ) |
| 17 |
12 15 16
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ ℂ ) |
| 18 |
|
addcl |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ℂ ∧ ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ ℂ ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 19 |
11 17 18
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 20 |
19
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 21 |
|
reex |
⊢ ℝ ∈ V |
| 22 |
21
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 23 |
10
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 24 |
|
ovexd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
| 25 |
9
|
feqmptd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 27 |
21
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ℝ ∈ V ) |
| 28 |
12
|
a1i |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → i ∈ ℂ ) |
| 29 |
|
fconstmpt |
⊢ ( ℝ × { i } ) = ( 𝑥 ∈ ℝ ↦ i ) |
| 30 |
29
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ( ℝ × { i } ) = ( 𝑥 ∈ ℝ ↦ i ) ) |
| 31 |
13
|
feqmptd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 = ( 𝑥 ∈ ℝ ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 32 |
27 28 14 30 31
|
offval2 |
⊢ ( 𝑔 ∈ dom ∫1 → ( ( ℝ × { i } ) ∘f · 𝑔 ) = ( 𝑥 ∈ ℝ ↦ ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( ℝ × { i } ) ∘f · 𝑔 ) = ( 𝑥 ∈ ℝ ↦ ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 34 |
22 23 24 26 33
|
offval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 35 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 36 |
35
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → abs : ℂ ⟶ ℝ ) |
| 37 |
36
|
feqmptd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → abs = ( 𝑡 ∈ ℂ ↦ ( abs ‘ 𝑡 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑡 = ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) → ( abs ‘ 𝑡 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 39 |
20 34 37 38
|
fmptco |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 40 |
|
ftc1anclem3 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ∈ dom ∫1 ) |
| 41 |
39 40
|
eqeltrrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ∈ dom ∫1 ) |
| 42 |
|
ioombl |
⊢ ( 𝑢 (,) 𝑤 ) ∈ dom vol |
| 43 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑡 ) ) |
| 44 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) |
| 45 |
44
|
oveq2d |
⊢ ( 𝑥 = 𝑡 → ( i · ( 𝑔 ‘ 𝑥 ) ) = ( i · ( 𝑔 ‘ 𝑡 ) ) ) |
| 46 |
43 45
|
oveq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) = ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 47 |
46
|
fveq2d |
⊢ ( 𝑥 = 𝑡 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 48 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 49 |
|
fvex |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ V |
| 50 |
47 48 49
|
fvmpt |
⊢ ( 𝑡 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 51 |
50
|
eqcomd |
⊢ ( 𝑡 ∈ ℝ → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) ) |
| 52 |
51
|
ifeq1d |
⊢ ( 𝑡 ∈ ℝ → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) , 0 ) ) |
| 53 |
52
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) , 0 ) ) |
| 54 |
53
|
i1fres |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ∈ dom ∫1 ∧ ( 𝑢 (,) 𝑤 ) ∈ dom vol ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 55 |
41 42 54
|
sylancl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 56 |
|
breq2 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ↔ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 57 |
|
breq2 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 58 |
|
elioore |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → 𝑡 ∈ ℝ ) |
| 59 |
|
eleq1w |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ ) ) |
| 60 |
59
|
anbi2d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) ↔ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ) ) |
| 61 |
46
|
eleq1d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ↔ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) ) |
| 62 |
60 61
|
imbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) ↔ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) ) ) |
| 63 |
62 20
|
chvarvv |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 64 |
63
|
absge0d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 65 |
58 64
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 66 |
|
0le0 |
⊢ 0 ≤ 0 |
| 67 |
66
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ 0 ) |
| 68 |
56 57 65 67
|
ifbothda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 69 |
68
|
ralrimivw |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∀ 𝑡 ∈ ℝ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 70 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 71 |
70
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ℝ ⊆ ℂ ) |
| 72 |
|
c0ex |
⊢ 0 ∈ V |
| 73 |
49 72
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V |
| 74 |
|
eqid |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
| 75 |
73 74
|
fnmpti |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) Fn ℝ |
| 76 |
75
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) Fn ℝ ) |
| 77 |
71 76
|
0pledm |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ) |
| 78 |
72
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → 0 ∈ V ) |
| 79 |
73
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V ) |
| 80 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) |
| 81 |
80
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) ) |
| 82 |
|
eqidd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 83 |
22 78 79 81 82
|
ofrfval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 84 |
77 83
|
bitrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 85 |
69 84
|
mpbird |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
| 86 |
|
itg2itg1 |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ) |
| 87 |
|
itg1cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 89 |
86 88
|
eqeltrd |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 90 |
55 85 89
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 91 |
90
|
ad6antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 92 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ) |
| 93 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 94 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 95 |
93 94
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 96 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑡 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦 ) } ) |
| 97 |
96
|
elixx3g |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑢 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) ) |
| 98 |
97
|
simprbi |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) |
| 99 |
98
|
simpld |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ≤ 𝑢 ) |
| 100 |
96
|
elixx3g |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) ) |
| 101 |
100
|
simprbi |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) |
| 102 |
101
|
simprd |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → 𝑤 ≤ 𝐵 ) |
| 103 |
99 102
|
anim12i |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) |
| 104 |
|
ioossioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 105 |
95 103 104
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 106 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 107 |
105 106
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ 𝐷 ) |
| 108 |
107
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑢 (,) 𝑤 ) ⊆ 𝐷 ) |
| 109 |
108
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
| 110 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 111 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 112 |
109 111
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 113 |
112
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 114 |
63
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 115 |
58 114
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 116 |
115
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 117 |
113 116
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 118 |
117
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 119 |
118
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 120 |
117
|
absge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 121 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 122 |
119 120 121
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 123 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 124 |
123
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 125 |
122 124
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 126 |
125
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 127 |
126
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 128 |
92 127
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 129 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
| 130 |
129
|
rehalfcld |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ ) |
| 131 |
130
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 132 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ) |
| 133 |
107
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
| 134 |
133
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
| 135 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 136 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ ℝ ) |
| 137 |
136
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ ℝ ) |
| 138 |
137 114
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
| 139 |
135 138
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 140 |
139
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 141 |
140
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 142 |
141
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 143 |
134 142
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 144 |
139
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 145 |
144
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 146 |
134 145
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 147 |
143 146 121
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 148 |
123
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 149 |
147 148
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 150 |
149
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 151 |
150
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 152 |
|
itg2cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 153 |
151 152
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 154 |
132 153
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
| 155 |
|
rphalfcl |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 156 |
155
|
rpxrd |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ* ) |
| 157 |
156
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑦 / 2 ) ∈ ℝ* ) |
| 158 |
|
0cnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℂ ) |
| 159 |
110 158
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ∈ ℂ ) |
| 160 |
|
subcl |
⊢ ( ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ∈ ℂ ∧ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 161 |
159 63 160
|
syl2an |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 162 |
161
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
| 163 |
162
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 164 |
163
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
| 165 |
162
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 166 |
|
elxrge0 |
⊢ ( ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 167 |
164 165 166
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 168 |
167
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 169 |
|
itg2cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ∈ ℝ* ) |
| 170 |
168 169
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ∈ ℝ* ) |
| 171 |
170
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ∈ ℝ* ) |
| 172 |
168
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 173 |
|
breq1 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 174 |
|
breq1 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 175 |
140
|
leidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 176 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 177 |
176
|
fvoveq1d |
⊢ ( 𝑡 ∈ 𝐷 → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 178 |
177
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 179 |
175 178
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 180 |
179
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 181 |
134 180
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 182 |
181
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 183 |
165
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 184 |
183
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 185 |
173 174 182 184
|
ifbothda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 186 |
185
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 187 |
21
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 188 |
|
fvex |
⊢ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ V |
| 189 |
188 72
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V |
| 190 |
189
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V ) |
| 191 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ V ) |
| 192 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
| 193 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 194 |
187 190 191 192 193
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 195 |
194
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 196 |
186 195
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
| 197 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ) |
| 198 |
151 172 196 197
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ) |
| 199 |
132 198
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ) |
| 200 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) |
| 201 |
154 171 157 199 200
|
xrlelttrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 202 |
154 157 201
|
xrltled |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) |
| 203 |
202
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) |
| 204 |
203
|
3adantr3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) |
| 205 |
|
itg2lecl |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑦 / 2 ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 206 |
128 131 204 205
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 207 |
206
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 208 |
130
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 209 |
90
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 210 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 211 |
|
imassrn |
⊢ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ran abs |
| 212 |
|
frn |
⊢ ( abs : ℂ ⟶ ℝ → ran abs ⊆ ℝ ) |
| 213 |
35 212
|
ax-mp |
⊢ ran abs ⊆ ℝ |
| 214 |
211 213
|
sstri |
⊢ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ |
| 215 |
214
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ) |
| 216 |
9
|
frnd |
⊢ ( 𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ ) |
| 217 |
216
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ran 𝑓 ⊆ ℝ ) |
| 218 |
13
|
frnd |
⊢ ( 𝑔 ∈ dom ∫1 → ran 𝑔 ⊆ ℝ ) |
| 219 |
218
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ran 𝑔 ⊆ ℝ ) |
| 220 |
217 219
|
unssd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℝ ) |
| 221 |
220 70
|
sstrdi |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ) |
| 222 |
|
i1f0rn |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ∈ ran 𝑓 ) |
| 223 |
|
elun1 |
⊢ ( 0 ∈ ran 𝑓 → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 224 |
222 223
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 225 |
224
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 226 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
| 227 |
35 226
|
ax-mp |
⊢ abs Fn ℂ |
| 228 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 229 |
227 228
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 230 |
221 225 229
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 231 |
230
|
ne0d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ) |
| 232 |
|
ffun |
⊢ ( abs : ℂ ⟶ ℝ → Fun abs ) |
| 233 |
35 232
|
ax-mp |
⊢ Fun abs |
| 234 |
|
i1frn |
⊢ ( 𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin ) |
| 235 |
|
i1frn |
⊢ ( 𝑔 ∈ dom ∫1 → ran 𝑔 ∈ Fin ) |
| 236 |
|
unfi |
⊢ ( ( ran 𝑓 ∈ Fin ∧ ran 𝑔 ∈ Fin ) → ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) |
| 237 |
234 235 236
|
syl2an |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) |
| 238 |
|
imafi |
⊢ ( ( Fun abs ∧ ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) |
| 239 |
233 237 238
|
sylancr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) |
| 240 |
|
fimaxre2 |
⊢ ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) |
| 241 |
214 239 240
|
sylancr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) |
| 242 |
|
suprcl |
⊢ ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 243 |
215 231 241 242
|
syl3anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 244 |
243
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 245 |
|
0red |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 ∈ ℝ ) |
| 246 |
221
|
sselda |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → 𝑟 ∈ ℂ ) |
| 247 |
246
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ℝ ) |
| 248 |
247
|
adantrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → ( abs ‘ 𝑟 ) ∈ ℝ ) |
| 249 |
|
absgt0 |
⊢ ( 𝑟 ∈ ℂ → ( 𝑟 ≠ 0 ↔ 0 < ( abs ‘ 𝑟 ) ) ) |
| 250 |
246 249
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( 𝑟 ≠ 0 ↔ 0 < ( abs ‘ 𝑟 ) ) ) |
| 251 |
250
|
biimpa |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) ∧ 𝑟 ≠ 0 ) → 0 < ( abs ‘ 𝑟 ) ) |
| 252 |
251
|
anasss |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 < ( abs ‘ 𝑟 ) ) |
| 253 |
215 231 241
|
3jca |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
| 254 |
253
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
| 255 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 256 |
227 255
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 257 |
221 256
|
sylan |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 258 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 259 |
254 257 258
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 260 |
259
|
adantrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 261 |
245 248 244 252 260
|
ltletrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 < sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 262 |
244 261
|
elrpd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) |
| 263 |
262
|
rexlimdvaa |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) ) |
| 264 |
263
|
imp |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) |
| 265 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 266 |
210 264 265
|
sylancr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 267 |
209 266
|
rerpdivcld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 268 |
267
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 269 |
268
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 270 |
269
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 271 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → 𝜑 ) |
| 272 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 273 |
2 3 272
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 274 |
273 70
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 275 |
274
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ ℂ ) |
| 276 |
274
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑢 ∈ ℂ ) |
| 277 |
|
subcl |
⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( 𝑤 − 𝑢 ) ∈ ℂ ) |
| 278 |
275 276 277
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑤 − 𝑢 ) ∈ ℂ ) |
| 279 |
278
|
anandis |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑤 − 𝑢 ) ∈ ℂ ) |
| 280 |
279
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
| 281 |
280
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
| 282 |
271 281
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
| 283 |
282
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
| 284 |
|
rpdivcl |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
| 285 |
155 266 284
|
syl2anr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
| 286 |
285
|
rpred |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 287 |
286
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 288 |
287
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 289 |
288
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
| 290 |
273
|
sseld |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → 𝑢 ∈ ℝ ) ) |
| 291 |
273
|
sseld |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → 𝑤 ∈ ℝ ) ) |
| 292 |
|
idd |
⊢ ( 𝜑 → ( 𝑢 ≤ 𝑤 → 𝑢 ≤ 𝑤 ) ) |
| 293 |
290 291 292
|
3anim123d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) → ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) ) |
| 294 |
293
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) → ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) ) |
| 295 |
294
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) |
| 296 |
63
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 297 |
296
|
rexrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ* ) |
| 298 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
| 299 |
297 64 298
|
sylanbrc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 300 |
|
ifcl |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 301 |
299 123 300
|
sylancl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 302 |
301
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 303 |
243
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℂ ) |
| 304 |
303
|
2timesd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) = ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 305 |
243 243
|
readdcld |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ ) |
| 306 |
305
|
rexrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ* ) |
| 307 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 308 |
307 230
|
eqeltrrid |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 309 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ 0 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → 0 ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 310 |
253 308 309
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 311 |
243 243 310 310
|
addge0d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 312 |
|
elxrge0 |
⊢ ( ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ* ∧ 0 ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) |
| 313 |
306 311 312
|
sylanbrc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ) |
| 314 |
304 313
|
eqeltrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ) |
| 315 |
|
ifcl |
⊢ ( ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 316 |
314 123 315
|
sylancl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 317 |
316
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 318 |
317
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 319 |
9
|
ffvelcdmda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
| 320 |
319
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
| 321 |
320
|
abscld |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ) |
| 322 |
13
|
ffvelcdmda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) |
| 323 |
322
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) |
| 324 |
323
|
abscld |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) |
| 325 |
|
readdcl |
⊢ ( ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 326 |
321 324 325
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 327 |
326
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 328 |
305
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ ) |
| 329 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 330 |
12 323 329
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 331 |
|
abstri |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ ℂ ∧ ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 332 |
320 330 331
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 333 |
332
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 334 |
|
absmul |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 335 |
12 323 334
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 336 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
| 337 |
336
|
oveq1i |
⊢ ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) = ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 338 |
335 337
|
eqtrdi |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 339 |
324
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
| 340 |
339
|
mullidd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 341 |
338 340
|
eqtrd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 342 |
341
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
| 343 |
342
|
oveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 344 |
333 343
|
breqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 345 |
321
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ) |
| 346 |
324
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) |
| 347 |
243
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
| 348 |
253
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
| 349 |
221
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ) |
| 350 |
9
|
ffnd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 Fn ℝ ) |
| 351 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 ) |
| 352 |
350 351
|
sylan |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 ) |
| 353 |
|
elun1 |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 354 |
352 353
|
syl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 355 |
354
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 356 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 357 |
227 356
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 358 |
349 355 357
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 359 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 360 |
348 358 359
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 361 |
13
|
ffnd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 Fn ℝ ) |
| 362 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 ) |
| 363 |
361 362
|
sylan |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 ) |
| 364 |
|
elun2 |
⊢ ( ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 365 |
363 364
|
syl |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 366 |
365
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
| 367 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 368 |
227 367
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 369 |
349 366 368
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
| 370 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 371 |
348 369 370
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
| 372 |
345 346 347 347 360 371
|
le2addd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 373 |
296 327 328 344 372
|
letrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 374 |
304
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) = ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 375 |
373 374
|
breqtrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 376 |
58 375
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 377 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 378 |
377
|
adantl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
| 379 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) = ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 380 |
379
|
adantl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) = ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 381 |
376 378 380
|
3brtr4d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
| 382 |
381
|
ex |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
| 383 |
66
|
a1i |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → 0 ≤ 0 ) |
| 384 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = 0 ) |
| 385 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) = 0 ) |
| 386 |
383 384 385
|
3brtr4d |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
| 387 |
382 386
|
pm2.61d1 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
| 388 |
387
|
ralrimivw |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
| 389 |
|
ovex |
⊢ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ V |
| 390 |
389 72
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ V |
| 391 |
390
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ V ) |
| 392 |
|
eqidd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
| 393 |
22 79 391 82 392
|
ofrfval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
| 394 |
388 393
|
mpbird |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
| 395 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) ) |
| 396 |
302 318 394 395
|
syl3anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) ) |
| 397 |
396
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) ) |
| 398 |
|
mblvol |
⊢ ( ( 𝑢 (,) 𝑤 ) ∈ dom vol → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) ) |
| 399 |
42 398
|
ax-mp |
⊢ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) |
| 400 |
|
ovolioo |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) = ( 𝑤 − 𝑢 ) ) |
| 401 |
399 400
|
eqtrid |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( 𝑤 − 𝑢 ) ) |
| 402 |
|
resubcl |
⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑤 − 𝑢 ) ∈ ℝ ) |
| 403 |
402
|
ancoms |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 𝑤 − 𝑢 ) ∈ ℝ ) |
| 404 |
403
|
3adant3 |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( 𝑤 − 𝑢 ) ∈ ℝ ) |
| 405 |
401 404
|
eqeltrd |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ) |
| 406 |
|
elrege0 |
⊢ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ↔ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ∧ 0 ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
| 407 |
243 310 406
|
sylanbrc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ) |
| 408 |
|
ge0addcl |
⊢ ( ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ∧ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) |
| 409 |
407 407 408
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) |
| 410 |
304 409
|
eqeltrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) |
| 411 |
|
itg2const |
⊢ ( ( ( 𝑢 (,) 𝑤 ) ∈ dom vol ∧ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ∧ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) = ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
| 412 |
42 411
|
mp3an1 |
⊢ ( ( ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ∧ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) = ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
| 413 |
405 410 412
|
syl2anr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) = ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
| 414 |
397 413
|
breqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
| 415 |
414
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
| 416 |
415
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
| 417 |
90
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 418 |
405
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ) |
| 419 |
266
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 420 |
419
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 421 |
417 418 420
|
ledivmuld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) ) |
| 422 |
416 421
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) |
| 423 |
|
abssubge0 |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) = ( 𝑤 − 𝑢 ) ) |
| 424 |
400 423
|
eqtr4d |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) = ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 425 |
399 424
|
eqtrid |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 426 |
425
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 427 |
422 426
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 428 |
295 427
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 429 |
428
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 430 |
429
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 431 |
430
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
| 432 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) |
| 433 |
270 283 289 431 432
|
lelttrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) |
| 434 |
90
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 435 |
434
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 436 |
130
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 437 |
419
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 438 |
437
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
| 439 |
435 436 438
|
ltdiv1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
| 440 |
439
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
| 441 |
433 440
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 442 |
201
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 443 |
442
|
3adantr3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 444 |
443
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
| 445 |
91 207 208 208 441 444
|
lt2addd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) < ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) ) |