Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1anc.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
2 |
|
ftc1anc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ftc1anc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
ftc1anc.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
ftc1anc.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ftc1anc.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
7 |
|
ftc1anc.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
8 |
|
ftc1anc.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
9 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
10 |
9
|
ffvelrnda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
12 |
|
ax-icn |
⊢ i ∈ ℂ |
13 |
|
i1ff |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 : ℝ ⟶ ℝ ) |
14 |
13
|
ffvelrnda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℂ ) |
16 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℂ ) → ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ ℂ ) |
17 |
12 15 16
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ ℂ ) |
18 |
|
addcl |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ℂ ∧ ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ ℂ ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) |
19 |
11 17 18
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) |
20 |
19
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) |
21 |
|
reex |
⊢ ℝ ∈ V |
22 |
21
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ℝ ∈ V ) |
23 |
10
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
24 |
|
ovexd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
25 |
9
|
feqmptd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
27 |
21
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ℝ ∈ V ) |
28 |
12
|
a1i |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → i ∈ ℂ ) |
29 |
|
fconstmpt |
⊢ ( ℝ × { i } ) = ( 𝑥 ∈ ℝ ↦ i ) |
30 |
29
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ( ℝ × { i } ) = ( 𝑥 ∈ ℝ ↦ i ) ) |
31 |
13
|
feqmptd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 = ( 𝑥 ∈ ℝ ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
32 |
27 28 14 30 31
|
offval2 |
⊢ ( 𝑔 ∈ dom ∫1 → ( ( ℝ × { i } ) ∘f · 𝑔 ) = ( 𝑥 ∈ ℝ ↦ ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( ℝ × { i } ) ∘f · 𝑔 ) = ( 𝑥 ∈ ℝ ↦ ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) |
34 |
22 23 24 26 33
|
offval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
35 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
36 |
35
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → abs : ℂ ⟶ ℝ ) |
37 |
36
|
feqmptd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → abs = ( 𝑡 ∈ ℂ ↦ ( abs ‘ 𝑡 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑡 = ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) → ( abs ‘ 𝑡 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
39 |
20 34 37 38
|
fmptco |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
40 |
|
ftc1anclem3 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ∘ ( 𝑓 ∘f + ( ( ℝ × { i } ) ∘f · 𝑔 ) ) ) ∈ dom ∫1 ) |
41 |
39 40
|
eqeltrrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ∈ dom ∫1 ) |
42 |
|
ioombl |
⊢ ( 𝑢 (,) 𝑤 ) ∈ dom vol |
43 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑡 ) ) |
44 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝑥 = 𝑡 → ( i · ( 𝑔 ‘ 𝑥 ) ) = ( i · ( 𝑔 ‘ 𝑡 ) ) ) |
46 |
43 45
|
oveq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) = ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) |
47 |
46
|
fveq2d |
⊢ ( 𝑥 = 𝑡 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
48 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
49 |
|
fvex |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ V |
50 |
47 48 49
|
fvmpt |
⊢ ( 𝑡 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
51 |
50
|
eqcomd |
⊢ ( 𝑡 ∈ ℝ → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) ) |
52 |
51
|
ifeq1d |
⊢ ( 𝑡 ∈ ℝ → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) , 0 ) ) |
53 |
52
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ‘ 𝑡 ) , 0 ) ) |
54 |
53
|
i1fres |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ∈ dom ∫1 ∧ ( 𝑢 (,) 𝑤 ) ∈ dom vol ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
55 |
41 42 54
|
sylancl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
56 |
|
breq2 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ↔ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
57 |
|
breq2 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
58 |
|
elioore |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → 𝑡 ∈ ℝ ) |
59 |
|
eleq1w |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ ) ) |
60 |
59
|
anbi2d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) ↔ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ) ) |
61 |
46
|
eleq1d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ↔ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) ) |
62 |
60 61
|
imbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑥 ) + ( i · ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℂ ) ↔ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) ) ) |
63 |
62 20
|
chvarvv |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
64 |
63
|
absge0d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
65 |
58 64
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
66 |
|
0le0 |
⊢ 0 ≤ 0 |
67 |
66
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ 0 ) |
68 |
56 57 65 67
|
ifbothda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
69 |
68
|
ralrimivw |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∀ 𝑡 ∈ ℝ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
70 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
71 |
70
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ℝ ⊆ ℂ ) |
72 |
|
c0ex |
⊢ 0 ∈ V |
73 |
49 72
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V |
74 |
|
eqid |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) |
75 |
73 74
|
fnmpti |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) Fn ℝ |
76 |
75
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) Fn ℝ ) |
77 |
71 76
|
0pledm |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ) |
78 |
72
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → 0 ∈ V ) |
79 |
73
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ V ) |
80 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) |
81 |
80
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) ) |
82 |
|
eqidd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
83 |
22 78 79 81 82
|
ofrfval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
84 |
77 83
|
bitrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ 0 ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
85 |
69 84
|
mpbird |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) |
86 |
|
itg2itg1 |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ) |
87 |
|
itg1cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
88 |
87
|
adantr |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
89 |
86 88
|
eqeltrd |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
90 |
55 85 89
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
91 |
90
|
ad6antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
92 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ) |
93 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
94 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
95 |
93 94
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
96 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑡 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦 ) } ) |
97 |
96
|
elixx3g |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑢 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) ) |
98 |
97
|
simprbi |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵 ) ) |
99 |
98
|
simpld |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ≤ 𝑢 ) |
100 |
96
|
elixx3g |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) ) |
101 |
100
|
simprbi |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵 ) ) |
102 |
101
|
simprd |
⊢ ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → 𝑤 ≤ 𝐵 ) |
103 |
99 102
|
anim12i |
⊢ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) |
104 |
|
ioossioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵 ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
105 |
95 103 104
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
106 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
107 |
105 106
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑢 (,) 𝑤 ) ⊆ 𝐷 ) |
108 |
107
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑢 (,) 𝑤 ) ⊆ 𝐷 ) |
109 |
108
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
110 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
111 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
112 |
109 111
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
113 |
112
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
114 |
63
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
115 |
58 114
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
116 |
115
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
117 |
113 116
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
118 |
117
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
119 |
118
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
120 |
117
|
absge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
121 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
122 |
119 120 121
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
123 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
124 |
123
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
125 |
122 124
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
126 |
125
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
127 |
126
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
128 |
92 127
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
129 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
130 |
129
|
rehalfcld |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ ) |
131 |
130
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
132 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ) |
133 |
107
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
134 |
133
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 𝑡 ∈ 𝐷 ) |
135 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
136 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ ℝ ) |
137 |
136
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → 𝑡 ∈ ℝ ) |
138 |
137 114
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) |
139 |
135 138
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
140 |
139
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
141 |
140
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
142 |
141
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
143 |
134 142
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
144 |
139
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
145 |
144
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
146 |
134 145
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
147 |
143 146 121
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
148 |
123
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
149 |
147 148
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
150 |
149
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
151 |
150
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
152 |
|
itg2cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
153 |
151 152
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
154 |
132 153
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ* ) |
155 |
|
rphalfcl |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ+ ) |
156 |
155
|
rpxrd |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ* ) |
157 |
156
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑦 / 2 ) ∈ ℝ* ) |
158 |
|
0cnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℂ ) |
159 |
110 158
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ∈ ℂ ) |
160 |
|
subcl |
⊢ ( ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ∈ ℂ ∧ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℂ ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
161 |
159 63 160
|
syl2an |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
162 |
161
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℂ ) |
163 |
162
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
164 |
163
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ) |
165 |
162
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
166 |
|
elxrge0 |
⊢ ( ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
167 |
164 165 166
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
168 |
167
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
169 |
|
itg2cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ∈ ℝ* ) |
170 |
168 169
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ∈ ℝ* ) |
171 |
170
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ∈ ℝ* ) |
172 |
168
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
173 |
|
breq1 |
⊢ ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
174 |
|
breq1 |
⊢ ( 0 = if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ↔ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
175 |
140
|
leidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
176 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) = ( 𝐹 ‘ 𝑡 ) ) |
177 |
176
|
fvoveq1d |
⊢ ( 𝑡 ∈ 𝐷 → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
178 |
177
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
179 |
175 178
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
180 |
179
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ 𝐷 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
181 |
134 180
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
182 |
181
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
183 |
165
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
184 |
183
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → 0 ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
185 |
173 174 182 184
|
ifbothda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
186 |
185
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
187 |
21
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
188 |
|
fvex |
⊢ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ V |
189 |
188 72
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V |
190 |
189
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ∈ V ) |
191 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ∈ V ) |
192 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) |
193 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
194 |
187 190 191 192 193
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
195 |
194
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ≤ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
196 |
186 195
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) |
197 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ) |
198 |
151 172 196 197
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ) |
199 |
132 198
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) ) |
200 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) |
201 |
154 171 157 199 200
|
xrlelttrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
202 |
154 157 201
|
xrltled |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) |
203 |
202
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) |
204 |
203
|
3adantr3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) |
205 |
|
itg2lecl |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑦 / 2 ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ≤ ( 𝑦 / 2 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
206 |
128 131 204 205
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
207 |
206
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
208 |
130
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
209 |
90
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
210 |
|
2rp |
⊢ 2 ∈ ℝ+ |
211 |
|
imassrn |
⊢ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ran abs |
212 |
|
frn |
⊢ ( abs : ℂ ⟶ ℝ → ran abs ⊆ ℝ ) |
213 |
35 212
|
ax-mp |
⊢ ran abs ⊆ ℝ |
214 |
211 213
|
sstri |
⊢ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ |
215 |
214
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ) |
216 |
9
|
frnd |
⊢ ( 𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ ) |
217 |
216
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ran 𝑓 ⊆ ℝ ) |
218 |
13
|
frnd |
⊢ ( 𝑔 ∈ dom ∫1 → ran 𝑔 ⊆ ℝ ) |
219 |
218
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ran 𝑔 ⊆ ℝ ) |
220 |
217 219
|
unssd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℝ ) |
221 |
220 70
|
sstrdi |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ) |
222 |
|
i1f0rn |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ∈ ran 𝑓 ) |
223 |
|
elun1 |
⊢ ( 0 ∈ ran 𝑓 → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
224 |
222 223
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
225 |
224
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
226 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
227 |
35 226
|
ax-mp |
⊢ abs Fn ℂ |
228 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
229 |
227 228
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 0 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
230 |
221 225 229
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs ‘ 0 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
231 |
230
|
ne0d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ) |
232 |
|
ffun |
⊢ ( abs : ℂ ⟶ ℝ → Fun abs ) |
233 |
35 232
|
ax-mp |
⊢ Fun abs |
234 |
|
i1frn |
⊢ ( 𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin ) |
235 |
|
i1frn |
⊢ ( 𝑔 ∈ dom ∫1 → ran 𝑔 ∈ Fin ) |
236 |
|
unfi |
⊢ ( ( ran 𝑓 ∈ Fin ∧ ran 𝑔 ∈ Fin ) → ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) |
237 |
234 235 236
|
syl2an |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) |
238 |
|
imafi |
⊢ ( ( Fun abs ∧ ( ran 𝑓 ∪ ran 𝑔 ) ∈ Fin ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) |
239 |
233 237 238
|
sylancr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) |
240 |
|
fimaxre2 |
⊢ ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) |
241 |
214 239 240
|
sylancr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) |
242 |
|
suprcl |
⊢ ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
243 |
215 231 241 242
|
syl3anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
244 |
243
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
245 |
|
0red |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 ∈ ℝ ) |
246 |
221
|
sselda |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → 𝑟 ∈ ℂ ) |
247 |
246
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ℝ ) |
248 |
247
|
adantrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → ( abs ‘ 𝑟 ) ∈ ℝ ) |
249 |
|
absgt0 |
⊢ ( 𝑟 ∈ ℂ → ( 𝑟 ≠ 0 ↔ 0 < ( abs ‘ 𝑟 ) ) ) |
250 |
246 249
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( 𝑟 ≠ 0 ↔ 0 < ( abs ‘ 𝑟 ) ) ) |
251 |
250
|
biimpa |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) ∧ 𝑟 ≠ 0 ) → 0 < ( abs ‘ 𝑟 ) ) |
252 |
251
|
anasss |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 < ( abs ‘ 𝑟 ) ) |
253 |
215 231 241
|
3jca |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
254 |
253
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
255 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
256 |
227 255
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
257 |
221 256
|
sylan |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
258 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ ( abs ‘ 𝑟 ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
259 |
254 257 258
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
260 |
259
|
adantrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → ( abs ‘ 𝑟 ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
261 |
245 248 244 252 260
|
ltletrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → 0 < sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
262 |
244 261
|
elrpd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) ∧ 𝑟 ≠ 0 ) ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) |
263 |
262
|
rexlimdvaa |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) ) |
264 |
263
|
imp |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) |
265 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ+ ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
266 |
210 264 265
|
sylancr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
267 |
209 266
|
rerpdivcld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
268 |
267
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
269 |
268
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
270 |
269
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
271 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → 𝜑 ) |
272 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
273 |
2 3 272
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
274 |
273 70
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
275 |
274
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ ℂ ) |
276 |
274
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑢 ∈ ℂ ) |
277 |
|
subcl |
⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( 𝑤 − 𝑢 ) ∈ ℂ ) |
278 |
275 276 277
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑤 − 𝑢 ) ∈ ℂ ) |
279 |
278
|
anandis |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑤 − 𝑢 ) ∈ ℂ ) |
280 |
279
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
281 |
280
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
282 |
271 281
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
283 |
282
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) ∈ ℝ ) |
284 |
|
rpdivcl |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
285 |
155 266 284
|
syl2anr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ+ ) |
286 |
285
|
rpred |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
287 |
286
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
288 |
287
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
289 |
288
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ∈ ℝ ) |
290 |
273
|
sseld |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) → 𝑢 ∈ ℝ ) ) |
291 |
273
|
sseld |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 [,] 𝐵 ) → 𝑤 ∈ ℝ ) ) |
292 |
|
idd |
⊢ ( 𝜑 → ( 𝑢 ≤ 𝑤 → 𝑢 ≤ 𝑤 ) ) |
293 |
290 291 292
|
3anim123d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) → ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) ) |
294 |
293
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) → ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) ) |
295 |
294
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) |
296 |
63
|
abscld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
297 |
296
|
rexrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ* ) |
298 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) |
299 |
297 64 298
|
sylanbrc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ) |
300 |
|
ifcl |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
301 |
299 123 300
|
sylancl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
302 |
301
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
303 |
243
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℂ ) |
304 |
303
|
2timesd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) = ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
305 |
243 243
|
readdcld |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ ) |
306 |
305
|
rexrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ* ) |
307 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
308 |
307 230
|
eqeltrrid |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
309 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ 0 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → 0 ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
310 |
253 308 309
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
311 |
243 243 310 310
|
addge0d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 0 ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
312 |
|
elxrge0 |
⊢ ( ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ* ∧ 0 ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) |
313 |
306 311 312
|
sylanbrc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ) |
314 |
304 313
|
eqeltrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ) |
315 |
|
ifcl |
⊢ ( ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,] +∞ ) ∧ 0 ∈ ( 0 [,] +∞ ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
316 |
314 123 315
|
sylancl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
317 |
316
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
318 |
317
|
fmpttd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
319 |
9
|
ffvelrnda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
320 |
319
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
321 |
320
|
abscld |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ) |
322 |
13
|
ffvelrnda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) |
323 |
322
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) |
324 |
323
|
abscld |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) |
325 |
|
readdcl |
⊢ ( ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
326 |
321 324 325
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
327 |
326
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ∈ ℝ ) |
328 |
305
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ ) |
329 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
330 |
12 323 329
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
331 |
|
abstri |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ ℂ ∧ ( i · ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
332 |
320 330 331
|
syl2an |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
333 |
332
|
anandirs |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
334 |
|
absmul |
⊢ ( ( i ∈ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℂ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
335 |
12 323 334
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
336 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
337 |
336
|
oveq1i |
⊢ ( ( abs ‘ i ) · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) = ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
338 |
335 337
|
eqtrdi |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
339 |
324
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℂ ) |
340 |
339
|
mulid2d |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 1 · ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
341 |
338 340
|
eqtrd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
342 |
341
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) = ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) |
343 |
342
|
oveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
344 |
333 343
|
breqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ) |
345 |
321
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ℝ ) |
346 |
324
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) |
347 |
243
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ) |
348 |
253
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ) |
349 |
221
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ) |
350 |
9
|
ffnd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 Fn ℝ ) |
351 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 ) |
352 |
350 351
|
sylan |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 ) |
353 |
|
elun1 |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ ran 𝑓 → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
354 |
352 353
|
syl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
355 |
354
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
356 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
357 |
227 356
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑓 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
358 |
349 355 357
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
359 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
360 |
348 358 359
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
361 |
13
|
ffnd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 Fn ℝ ) |
362 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 ) |
363 |
361 362
|
sylan |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 ) |
364 |
|
elun2 |
⊢ ( ( 𝑔 ‘ 𝑡 ) ∈ ran 𝑔 → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
365 |
363 364
|
syl |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
366 |
365
|
adantll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) |
367 |
|
fnfvima |
⊢ ( ( abs Fn ℂ ∧ ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
368 |
227 367
|
mp3an1 |
⊢ ( ( ( ran 𝑓 ∪ ran 𝑔 ) ⊆ ℂ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ( ran 𝑓 ∪ ran 𝑔 ) ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
369 |
349 366 368
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) |
370 |
|
suprub |
⊢ ( ( ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ⊆ ℝ ∧ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) 𝑦 ≤ 𝑥 ) ∧ ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ∈ ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
371 |
348 369 370
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) |
372 |
345 346 347 347 360 371
|
le2addd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝑓 ‘ 𝑡 ) ) + ( abs ‘ ( 𝑔 ‘ 𝑡 ) ) ) ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
373 |
296 327 328 344 372
|
letrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
374 |
304
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) = ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
375 |
373 374
|
breqtrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
376 |
58 375
|
sylan2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
377 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
378 |
377
|
adantl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) |
379 |
|
iftrue |
⊢ ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) = ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
380 |
379
|
adantl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) = ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
381 |
376 378 380
|
3brtr4d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
382 |
381
|
ex |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
383 |
66
|
a1i |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → 0 ≤ 0 ) |
384 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) = 0 ) |
385 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) = 0 ) |
386 |
383 384 385
|
3brtr4d |
⊢ ( ¬ 𝑡 ∈ ( 𝑢 (,) 𝑤 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
387 |
382 386
|
pm2.61d1 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
388 |
387
|
ralrimivw |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) |
389 |
|
ovex |
⊢ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ V |
390 |
389 72
|
ifex |
⊢ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ V |
391 |
390
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ∈ V ) |
392 |
|
eqidd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
393 |
22 79 391 82 392
|
ofrfval2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ≤ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
394 |
388 393
|
mpbird |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) |
395 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) ) |
396 |
302 318 394 395
|
syl3anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) ) |
397 |
396
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) ) |
398 |
|
mblvol |
⊢ ( ( 𝑢 (,) 𝑤 ) ∈ dom vol → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) ) |
399 |
42 398
|
ax-mp |
⊢ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) |
400 |
|
ovolioo |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) = ( 𝑤 − 𝑢 ) ) |
401 |
399 400
|
syl5eq |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( 𝑤 − 𝑢 ) ) |
402 |
|
resubcl |
⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑤 − 𝑢 ) ∈ ℝ ) |
403 |
402
|
ancoms |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 𝑤 − 𝑢 ) ∈ ℝ ) |
404 |
403
|
3adant3 |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( 𝑤 − 𝑢 ) ∈ ℝ ) |
405 |
401 404
|
eqeltrd |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ) |
406 |
|
elrege0 |
⊢ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ↔ ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ℝ ∧ 0 ≤ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) |
407 |
243 310 406
|
sylanbrc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ) |
408 |
|
ge0addcl |
⊢ ( ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ∧ sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ∈ ( 0 [,) +∞ ) ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) |
409 |
407 407 408
|
syl2anc |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) + sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) |
410 |
304 409
|
eqeltrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) |
411 |
|
itg2const |
⊢ ( ( ( 𝑢 (,) 𝑤 ) ∈ dom vol ∧ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ∧ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) = ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
412 |
42 411
|
mp3an1 |
⊢ ( ( ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ∧ ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) = ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
413 |
405 410 412
|
syl2anr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) , 0 ) ) ) = ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
414 |
397 413
|
breqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
415 |
414
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
416 |
415
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) |
417 |
90
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
418 |
405
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ∈ ℝ ) |
419 |
266
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
420 |
419
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
421 |
417 418 420
|
ledivmuld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ≤ ( ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) · ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) ) ) |
422 |
416 421
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( vol ‘ ( 𝑢 (,) 𝑤 ) ) ) |
423 |
|
abssubge0 |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) = ( 𝑤 − 𝑢 ) ) |
424 |
400 423
|
eqtr4d |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol* ‘ ( 𝑢 (,) 𝑤 ) ) = ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
425 |
399 424
|
syl5eq |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
426 |
425
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( vol ‘ ( 𝑢 (,) 𝑤 ) ) = ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
427 |
422 426
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
428 |
295 427
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
429 |
428
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
430 |
429
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
431 |
430
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ≤ ( abs ‘ ( 𝑤 − 𝑢 ) ) ) |
432 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) |
433 |
270 283 289 431 432
|
lelttrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) |
434 |
90
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
435 |
434
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
436 |
130
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 2 ) ∈ ℝ ) |
437 |
419
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
438 |
437
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ∈ ℝ+ ) |
439 |
435 436 438
|
ltdiv1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
440 |
439
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) ) |
441 |
433 440
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
442 |
201
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
443 |
442
|
3adantr3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
444 |
443
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) < ( 𝑦 / 2 ) ) |
445 |
91 207 208 208 441 444
|
lt2addd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) ) ) < ( 𝑦 / 2 ) ) ∧ ∃ 𝑟 ∈ ( ran 𝑓 ∪ ran 𝑔 ) 𝑟 ≠ 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑢 ≤ 𝑤 ) ) ∧ ( abs ‘ ( 𝑤 − 𝑢 ) ) < ( ( 𝑦 / 2 ) / ( 2 · sup ( ( abs “ ( ran 𝑓 ∪ ran 𝑔 ) ) , ℝ , < ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ( 𝑢 (,) 𝑤 ) , ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( ( 𝑓 ‘ 𝑡 ) + ( i · ( 𝑔 ‘ 𝑡 ) ) ) ) ) , 0 ) ) ) ) < ( ( 𝑦 / 2 ) + ( 𝑦 / 2 ) ) ) |