Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1anc.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
2 |
|
ftc1anc.a |
|- ( ph -> A e. RR ) |
3 |
|
ftc1anc.b |
|- ( ph -> B e. RR ) |
4 |
|
ftc1anc.le |
|- ( ph -> A <_ B ) |
5 |
|
ftc1anc.s |
|- ( ph -> ( A (,) B ) C_ D ) |
6 |
|
ftc1anc.d |
|- ( ph -> D C_ RR ) |
7 |
|
ftc1anc.i |
|- ( ph -> F e. L^1 ) |
8 |
|
ftc1anc.f |
|- ( ph -> F : D --> CC ) |
9 |
|
i1ff |
|- ( f e. dom S.1 -> f : RR --> RR ) |
10 |
9
|
ffvelrnda |
|- ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) e. RR ) |
11 |
10
|
recnd |
|- ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) e. CC ) |
12 |
|
ax-icn |
|- _i e. CC |
13 |
|
i1ff |
|- ( g e. dom S.1 -> g : RR --> RR ) |
14 |
13
|
ffvelrnda |
|- ( ( g e. dom S.1 /\ x e. RR ) -> ( g ` x ) e. RR ) |
15 |
14
|
recnd |
|- ( ( g e. dom S.1 /\ x e. RR ) -> ( g ` x ) e. CC ) |
16 |
|
mulcl |
|- ( ( _i e. CC /\ ( g ` x ) e. CC ) -> ( _i x. ( g ` x ) ) e. CC ) |
17 |
12 15 16
|
sylancr |
|- ( ( g e. dom S.1 /\ x e. RR ) -> ( _i x. ( g ` x ) ) e. CC ) |
18 |
|
addcl |
|- ( ( ( f ` x ) e. CC /\ ( _i x. ( g ` x ) ) e. CC ) -> ( ( f ` x ) + ( _i x. ( g ` x ) ) ) e. CC ) |
19 |
11 17 18
|
syl2an |
|- ( ( ( f e. dom S.1 /\ x e. RR ) /\ ( g e. dom S.1 /\ x e. RR ) ) -> ( ( f ` x ) + ( _i x. ( g ` x ) ) ) e. CC ) |
20 |
19
|
anandirs |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ x e. RR ) -> ( ( f ` x ) + ( _i x. ( g ` x ) ) ) e. CC ) |
21 |
|
reex |
|- RR e. _V |
22 |
21
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> RR e. _V ) |
23 |
10
|
adantlr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ x e. RR ) -> ( f ` x ) e. RR ) |
24 |
|
ovexd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ x e. RR ) -> ( _i x. ( g ` x ) ) e. _V ) |
25 |
9
|
feqmptd |
|- ( f e. dom S.1 -> f = ( x e. RR |-> ( f ` x ) ) ) |
26 |
25
|
adantr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> f = ( x e. RR |-> ( f ` x ) ) ) |
27 |
21
|
a1i |
|- ( g e. dom S.1 -> RR e. _V ) |
28 |
12
|
a1i |
|- ( ( g e. dom S.1 /\ x e. RR ) -> _i e. CC ) |
29 |
|
fconstmpt |
|- ( RR X. { _i } ) = ( x e. RR |-> _i ) |
30 |
29
|
a1i |
|- ( g e. dom S.1 -> ( RR X. { _i } ) = ( x e. RR |-> _i ) ) |
31 |
13
|
feqmptd |
|- ( g e. dom S.1 -> g = ( x e. RR |-> ( g ` x ) ) ) |
32 |
27 28 14 30 31
|
offval2 |
|- ( g e. dom S.1 -> ( ( RR X. { _i } ) oF x. g ) = ( x e. RR |-> ( _i x. ( g ` x ) ) ) ) |
33 |
32
|
adantl |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ( RR X. { _i } ) oF x. g ) = ( x e. RR |-> ( _i x. ( g ` x ) ) ) ) |
34 |
22 23 24 26 33
|
offval2 |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( f oF + ( ( RR X. { _i } ) oF x. g ) ) = ( x e. RR |-> ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) |
35 |
|
absf |
|- abs : CC --> RR |
36 |
35
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> abs : CC --> RR ) |
37 |
36
|
feqmptd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> abs = ( t e. CC |-> ( abs ` t ) ) ) |
38 |
|
fveq2 |
|- ( t = ( ( f ` x ) + ( _i x. ( g ` x ) ) ) -> ( abs ` t ) = ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) |
39 |
20 34 37 38
|
fmptco |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs o. ( f oF + ( ( RR X. { _i } ) oF x. g ) ) ) = ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) ) |
40 |
|
ftc1anclem3 |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs o. ( f oF + ( ( RR X. { _i } ) oF x. g ) ) ) e. dom S.1 ) |
41 |
39 40
|
eqeltrrd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) e. dom S.1 ) |
42 |
|
ioombl |
|- ( u (,) w ) e. dom vol |
43 |
|
fveq2 |
|- ( x = t -> ( f ` x ) = ( f ` t ) ) |
44 |
|
fveq2 |
|- ( x = t -> ( g ` x ) = ( g ` t ) ) |
45 |
44
|
oveq2d |
|- ( x = t -> ( _i x. ( g ` x ) ) = ( _i x. ( g ` t ) ) ) |
46 |
43 45
|
oveq12d |
|- ( x = t -> ( ( f ` x ) + ( _i x. ( g ` x ) ) ) = ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) |
47 |
46
|
fveq2d |
|- ( x = t -> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) = ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
48 |
|
eqid |
|- ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) = ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) |
49 |
|
fvex |
|- ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. _V |
50 |
47 48 49
|
fvmpt |
|- ( t e. RR -> ( ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) ` t ) = ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
51 |
50
|
eqcomd |
|- ( t e. RR -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = ( ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) ` t ) ) |
52 |
51
|
ifeq1d |
|- ( t e. RR -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) = if ( t e. ( u (,) w ) , ( ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) ` t ) , 0 ) ) |
53 |
52
|
mpteq2ia |
|- ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) ` t ) , 0 ) ) |
54 |
53
|
i1fres |
|- ( ( ( x e. RR |-> ( abs ` ( ( f ` x ) + ( _i x. ( g ` x ) ) ) ) ) e. dom S.1 /\ ( u (,) w ) e. dom vol ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) e. dom S.1 ) |
55 |
41 42 54
|
sylancl |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) e. dom S.1 ) |
56 |
|
breq2 |
|- ( ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) = if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) -> ( 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <-> 0 <_ if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) |
57 |
|
breq2 |
|- ( 0 = if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) |
58 |
|
elioore |
|- ( t e. ( u (,) w ) -> t e. RR ) |
59 |
|
eleq1w |
|- ( x = t -> ( x e. RR <-> t e. RR ) ) |
60 |
59
|
anbi2d |
|- ( x = t -> ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ x e. RR ) <-> ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) ) ) |
61 |
46
|
eleq1d |
|- ( x = t -> ( ( ( f ` x ) + ( _i x. ( g ` x ) ) ) e. CC <-> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) ) |
62 |
60 61
|
imbi12d |
|- ( x = t -> ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ x e. RR ) -> ( ( f ` x ) + ( _i x. ( g ` x ) ) ) e. CC ) <-> ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) ) ) |
63 |
62 20
|
chvarvv |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
64 |
63
|
absge0d |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
65 |
58 64
|
sylan2 |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
66 |
|
0le0 |
|- 0 <_ 0 |
67 |
66
|
a1i |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ -. t e. ( u (,) w ) ) -> 0 <_ 0 ) |
68 |
56 57 65 67
|
ifbothda |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0 <_ if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) |
69 |
68
|
ralrimivw |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> A. t e. RR 0 <_ if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) |
70 |
|
ax-resscn |
|- RR C_ CC |
71 |
70
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> RR C_ CC ) |
72 |
|
c0ex |
|- 0 e. _V |
73 |
49 72
|
ifex |
|- if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) e. _V |
74 |
|
eqid |
|- ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) |
75 |
73 74
|
fnmpti |
|- ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) Fn RR |
76 |
75
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) Fn RR ) |
77 |
71 76
|
0pledm |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( 0p oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) <-> ( RR X. { 0 } ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) ) |
78 |
72
|
a1i |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> 0 e. _V ) |
79 |
73
|
a1i |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) e. _V ) |
80 |
|
fconstmpt |
|- ( RR X. { 0 } ) = ( t e. RR |-> 0 ) |
81 |
80
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( RR X. { 0 } ) = ( t e. RR |-> 0 ) ) |
82 |
|
eqidd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) |
83 |
22 78 79 81 82
|
ofrfval2 |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ( RR X. { 0 } ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) <-> A. t e. RR 0 <_ if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) |
84 |
77 83
|
bitrd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( 0p oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) <-> A. t e. RR 0 <_ if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) |
85 |
69 84
|
mpbird |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0p oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) |
86 |
|
itg2itg1 |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) e. dom S.1 /\ 0p oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) = ( S.1 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) ) |
87 |
|
itg1cl |
|- ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
88 |
87
|
adantr |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) e. dom S.1 /\ 0p oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) -> ( S.1 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
89 |
86 88
|
eqeltrd |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) e. dom S.1 /\ 0p oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
90 |
55 85 89
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
91 |
90
|
ad6antlr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
92 |
|
simplll |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) ) |
93 |
2
|
rexrd |
|- ( ph -> A e. RR* ) |
94 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
95 |
93 94
|
jca |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
96 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { t e. RR* | ( x <_ t /\ t <_ y ) } ) |
97 |
96
|
elixx3g |
|- ( u e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ u e. RR* ) /\ ( A <_ u /\ u <_ B ) ) ) |
98 |
97
|
simprbi |
|- ( u e. ( A [,] B ) -> ( A <_ u /\ u <_ B ) ) |
99 |
98
|
simpld |
|- ( u e. ( A [,] B ) -> A <_ u ) |
100 |
96
|
elixx3g |
|- ( w e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) /\ ( A <_ w /\ w <_ B ) ) ) |
101 |
100
|
simprbi |
|- ( w e. ( A [,] B ) -> ( A <_ w /\ w <_ B ) ) |
102 |
101
|
simprd |
|- ( w e. ( A [,] B ) -> w <_ B ) |
103 |
99 102
|
anim12i |
|- ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) -> ( A <_ u /\ w <_ B ) ) |
104 |
|
ioossioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ u /\ w <_ B ) ) -> ( u (,) w ) C_ ( A (,) B ) ) |
105 |
95 103 104
|
syl2an |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) C_ ( A (,) B ) ) |
106 |
5
|
adantr |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( A (,) B ) C_ D ) |
107 |
105 106
|
sstrd |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( u (,) w ) C_ D ) |
108 |
107
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( u (,) w ) C_ D ) |
109 |
108
|
sselda |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> t e. D ) |
110 |
8
|
ffvelrnda |
|- ( ( ph /\ t e. D ) -> ( F ` t ) e. CC ) |
111 |
110
|
adantlr |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
112 |
109 111
|
syldan |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. CC ) |
113 |
112
|
adantllr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> ( F ` t ) e. CC ) |
114 |
63
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. RR ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
115 |
58 114
|
sylan2 |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
116 |
115
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
117 |
113 116
|
subcld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. CC ) |
118 |
117
|
abscld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR ) |
119 |
118
|
rexrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* ) |
120 |
117
|
absge0d |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
121 |
|
elxrge0 |
|- ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) <-> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* /\ 0 <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
122 |
119 120 121
|
sylanbrc |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) ) |
123 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
124 |
123
|
a1i |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ -. t e. ( u (,) w ) ) -> 0 e. ( 0 [,] +oo ) ) |
125 |
122 124
|
ifclda |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
126 |
125
|
adantr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
127 |
126
|
fmpttd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
128 |
92 127
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
129 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
130 |
129
|
rehalfcld |
|- ( y e. RR+ -> ( y / 2 ) e. RR ) |
131 |
130
|
ad2antlr |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( y / 2 ) e. RR ) |
132 |
|
simpll |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) -> ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) ) |
133 |
107
|
sselda |
|- ( ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> t e. D ) |
134 |
133
|
adantllr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> t e. D ) |
135 |
110
|
adantlr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( F ` t ) e. CC ) |
136 |
6
|
sselda |
|- ( ( ph /\ t e. D ) -> t e. RR ) |
137 |
136
|
adantlr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> t e. RR ) |
138 |
137 114
|
syldan |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) |
139 |
135 138
|
subcld |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. CC ) |
140 |
139
|
abscld |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR ) |
141 |
140
|
rexrd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* ) |
142 |
141
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* ) |
143 |
134 142
|
syldan |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* ) |
144 |
139
|
absge0d |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> 0 <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
145 |
144
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> 0 <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
146 |
134 145
|
syldan |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
147 |
143 146 121
|
sylanbrc |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) ) |
148 |
123
|
a1i |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ -. t e. ( u (,) w ) ) -> 0 e. ( 0 [,] +oo ) ) |
149 |
147 148
|
ifclda |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
150 |
149
|
adantr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
151 |
150
|
fmpttd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
152 |
|
itg2cl |
|- ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
153 |
151 152
|
syl |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
154 |
132 153
|
sylan |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR* ) |
155 |
|
rphalfcl |
|- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
156 |
155
|
rpxrd |
|- ( y e. RR+ -> ( y / 2 ) e. RR* ) |
157 |
156
|
ad2antlr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( y / 2 ) e. RR* ) |
158 |
|
0cnd |
|- ( ( ph /\ -. t e. D ) -> 0 e. CC ) |
159 |
110 158
|
ifclda |
|- ( ph -> if ( t e. D , ( F ` t ) , 0 ) e. CC ) |
160 |
|
subcl |
|- ( ( if ( t e. D , ( F ` t ) , 0 ) e. CC /\ ( ( f ` t ) + ( _i x. ( g ` t ) ) ) e. CC ) -> ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. CC ) |
161 |
159 63 160
|
syl2an |
|- ( ( ph /\ ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) ) -> ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. CC ) |
162 |
161
|
anassrs |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. RR ) -> ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. CC ) |
163 |
162
|
abscld |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR ) |
164 |
163
|
rexrd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* ) |
165 |
162
|
absge0d |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. RR ) -> 0 <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
166 |
|
elxrge0 |
|- ( ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) <-> ( ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. RR* /\ 0 <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
167 |
164 165 166
|
sylanbrc |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. ( 0 [,] +oo ) ) |
168 |
167
|
fmpttd |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) : RR --> ( 0 [,] +oo ) ) |
169 |
|
itg2cl |
|- ( ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) e. RR* ) |
170 |
168 169
|
syl |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) e. RR* ) |
171 |
170
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) e. RR* ) |
172 |
168
|
adantr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) : RR --> ( 0 [,] +oo ) ) |
173 |
|
breq1 |
|- ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) -> ( ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
174 |
|
breq1 |
|- ( 0 = if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) -> ( 0 <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
175 |
140
|
leidd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
176 |
|
iftrue |
|- ( t e. D -> if ( t e. D , ( F ` t ) , 0 ) = ( F ` t ) ) |
177 |
176
|
fvoveq1d |
|- ( t e. D -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
178 |
177
|
adantl |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) = ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
179 |
175 178
|
breqtrrd |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ t e. D ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
180 |
179
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. D ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
181 |
134 180
|
syldan |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
182 |
181
|
adantlr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
183 |
165
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> 0 <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
184 |
183
|
adantr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) /\ -. t e. ( u (,) w ) ) -> 0 <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
185 |
173 174 182 184
|
ifbothda |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
186 |
185
|
ralrimiva |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
187 |
21
|
a1i |
|- ( ph -> RR e. _V ) |
188 |
|
fvex |
|- ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. _V |
189 |
188 72
|
ifex |
|- if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. _V |
190 |
189
|
a1i |
|- ( ( ph /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) e. _V ) |
191 |
|
fvexd |
|- ( ( ph /\ t e. RR ) -> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) e. _V ) |
192 |
|
eqidd |
|- ( ph -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) |
193 |
|
eqidd |
|- ( ph -> ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) = ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
194 |
187 190 191 192 193
|
ofrfval2 |
|- ( ph -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) oR <_ ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
195 |
194
|
ad2antrr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) oR <_ ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) <_ ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
196 |
186 195
|
mpbird |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) oR <_ ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) |
197 |
|
itg2le |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) oR <_ ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) ) |
198 |
151 172 196 197
|
syl3anc |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) ) |
199 |
132 198
|
sylan |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) ) |
200 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) |
201 |
154 171 157 199 200
|
xrlelttrd |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) < ( y / 2 ) ) |
202 |
154 157 201
|
xrltled |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) <_ ( y / 2 ) ) |
203 |
202
|
adantllr |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) <_ ( y / 2 ) ) |
204 |
203
|
3adantr3 |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) <_ ( y / 2 ) ) |
205 |
|
itg2lecl |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( y / 2 ) e. RR /\ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) <_ ( y / 2 ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR ) |
206 |
128 131 204 205
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR ) |
207 |
206
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) e. RR ) |
208 |
130
|
ad3antlr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( y / 2 ) e. RR ) |
209 |
90
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
210 |
|
2rp |
|- 2 e. RR+ |
211 |
|
imassrn |
|- ( abs " ( ran f u. ran g ) ) C_ ran abs |
212 |
|
frn |
|- ( abs : CC --> RR -> ran abs C_ RR ) |
213 |
35 212
|
ax-mp |
|- ran abs C_ RR |
214 |
211 213
|
sstri |
|- ( abs " ( ran f u. ran g ) ) C_ RR |
215 |
214
|
a1i |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) C_ RR ) |
216 |
9
|
frnd |
|- ( f e. dom S.1 -> ran f C_ RR ) |
217 |
216
|
adantr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ran f C_ RR ) |
218 |
13
|
frnd |
|- ( g e. dom S.1 -> ran g C_ RR ) |
219 |
218
|
adantl |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ran g C_ RR ) |
220 |
217 219
|
unssd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) C_ RR ) |
221 |
220 70
|
sstrdi |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) C_ CC ) |
222 |
|
i1f0rn |
|- ( f e. dom S.1 -> 0 e. ran f ) |
223 |
|
elun1 |
|- ( 0 e. ran f -> 0 e. ( ran f u. ran g ) ) |
224 |
222 223
|
syl |
|- ( f e. dom S.1 -> 0 e. ( ran f u. ran g ) ) |
225 |
224
|
adantr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0 e. ( ran f u. ran g ) ) |
226 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
227 |
35 226
|
ax-mp |
|- abs Fn CC |
228 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ 0 e. ( ran f u. ran g ) ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
229 |
227 228
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ 0 e. ( ran f u. ran g ) ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
230 |
221 225 229
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs ` 0 ) e. ( abs " ( ran f u. ran g ) ) ) |
231 |
230
|
ne0d |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) =/= (/) ) |
232 |
|
ffun |
|- ( abs : CC --> RR -> Fun abs ) |
233 |
35 232
|
ax-mp |
|- Fun abs |
234 |
|
i1frn |
|- ( f e. dom S.1 -> ran f e. Fin ) |
235 |
|
i1frn |
|- ( g e. dom S.1 -> ran g e. Fin ) |
236 |
|
unfi |
|- ( ( ran f e. Fin /\ ran g e. Fin ) -> ( ran f u. ran g ) e. Fin ) |
237 |
234 235 236
|
syl2an |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ran f u. ran g ) e. Fin ) |
238 |
|
imafi |
|- ( ( Fun abs /\ ( ran f u. ran g ) e. Fin ) -> ( abs " ( ran f u. ran g ) ) e. Fin ) |
239 |
233 237 238
|
sylancr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( abs " ( ran f u. ran g ) ) e. Fin ) |
240 |
|
fimaxre2 |
|- ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) e. Fin ) -> E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) |
241 |
214 239 240
|
sylancr |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) |
242 |
|
suprcl |
|- ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
243 |
215 231 241 242
|
syl3anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
244 |
243
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
245 |
|
0red |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 e. RR ) |
246 |
221
|
sselda |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> r e. CC ) |
247 |
246
|
abscld |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. RR ) |
248 |
247
|
adantrr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> ( abs ` r ) e. RR ) |
249 |
|
absgt0 |
|- ( r e. CC -> ( r =/= 0 <-> 0 < ( abs ` r ) ) ) |
250 |
246 249
|
syl |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( r =/= 0 <-> 0 < ( abs ` r ) ) ) |
251 |
250
|
biimpa |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) /\ r =/= 0 ) -> 0 < ( abs ` r ) ) |
252 |
251
|
anasss |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 < ( abs ` r ) ) |
253 |
215 231 241
|
3jca |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) ) |
254 |
253
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) ) |
255 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
256 |
227 255
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
257 |
221 256
|
sylan |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) |
258 |
|
suprub |
|- ( ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) /\ ( abs ` r ) e. ( abs " ( ran f u. ran g ) ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
259 |
254 257 258
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ r e. ( ran f u. ran g ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
260 |
259
|
adantrr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> ( abs ` r ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
261 |
245 248 244 252 260
|
ltletrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> 0 < sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
262 |
244 261
|
elrpd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( r e. ( ran f u. ran g ) /\ r =/= 0 ) ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) |
263 |
262
|
rexlimdvaa |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( E. r e. ( ran f u. ran g ) r =/= 0 -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) ) |
264 |
263
|
imp |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) |
265 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR+ ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
266 |
210 264 265
|
sylancr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
267 |
209 266
|
rerpdivcld |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
268 |
267
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
269 |
268
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
270 |
269
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
271 |
|
simp-4l |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ph ) |
272 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
273 |
2 3 272
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
274 |
273 70
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
275 |
274
|
sselda |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. CC ) |
276 |
274
|
sselda |
|- ( ( ph /\ u e. ( A [,] B ) ) -> u e. CC ) |
277 |
|
subcl |
|- ( ( w e. CC /\ u e. CC ) -> ( w - u ) e. CC ) |
278 |
275 276 277
|
syl2anr |
|- ( ( ( ph /\ u e. ( A [,] B ) ) /\ ( ph /\ w e. ( A [,] B ) ) ) -> ( w - u ) e. CC ) |
279 |
278
|
anandis |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( w - u ) e. CC ) |
280 |
279
|
abscld |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( abs ` ( w - u ) ) e. RR ) |
281 |
280
|
3adantr3 |
|- ( ( ph /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( w - u ) ) e. RR ) |
282 |
271 281
|
sylan |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( abs ` ( w - u ) ) e. RR ) |
283 |
282
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( abs ` ( w - u ) ) e. RR ) |
284 |
|
rpdivcl |
|- ( ( ( y / 2 ) e. RR+ /\ ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
285 |
155 266 284
|
syl2anr |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR+ ) |
286 |
285
|
rpred |
|- ( ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
287 |
286
|
adantlll |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
288 |
287
|
adantllr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
289 |
288
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) e. RR ) |
290 |
273
|
sseld |
|- ( ph -> ( u e. ( A [,] B ) -> u e. RR ) ) |
291 |
273
|
sseld |
|- ( ph -> ( w e. ( A [,] B ) -> w e. RR ) ) |
292 |
|
idd |
|- ( ph -> ( u <_ w -> u <_ w ) ) |
293 |
290 291 292
|
3anim123d |
|- ( ph -> ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) -> ( u e. RR /\ w e. RR /\ u <_ w ) ) ) |
294 |
293
|
ad2antrr |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) -> ( u e. RR /\ w e. RR /\ u <_ w ) ) ) |
295 |
294
|
imp |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( u e. RR /\ w e. RR /\ u <_ w ) ) |
296 |
63
|
abscld |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR ) |
297 |
296
|
rexrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR* ) |
298 |
|
elxrge0 |
|- ( ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. ( 0 [,] +oo ) <-> ( ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. RR* /\ 0 <_ ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) |
299 |
297 64 298
|
sylanbrc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. ( 0 [,] +oo ) ) |
300 |
|
ifcl |
|- ( ( ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) e. ( 0 [,] +oo ) /\ 0 e. ( 0 [,] +oo ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
301 |
299 123 300
|
sylancl |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) e. ( 0 [,] +oo ) ) |
302 |
301
|
fmpttd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
303 |
243
|
recnd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. CC ) |
304 |
303
|
2timesd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) = ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
305 |
243 243
|
readdcld |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR ) |
306 |
305
|
rexrd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR* ) |
307 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
308 |
307 230
|
eqeltrrid |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0 e. ( abs " ( ran f u. ran g ) ) ) |
309 |
|
suprub |
|- ( ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) /\ 0 e. ( abs " ( ran f u. ran g ) ) ) -> 0 <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
310 |
253 308 309
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0 <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
311 |
243 243 310 310
|
addge0d |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> 0 <_ ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
312 |
|
elxrge0 |
|- ( ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,] +oo ) <-> ( ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR* /\ 0 <_ ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) |
313 |
306 311 312
|
sylanbrc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,] +oo ) ) |
314 |
304 313
|
eqeltrd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,] +oo ) ) |
315 |
|
ifcl |
|- ( ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,] +oo ) /\ 0 e. ( 0 [,] +oo ) ) -> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) e. ( 0 [,] +oo ) ) |
316 |
314 123 315
|
sylancl |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) e. ( 0 [,] +oo ) ) |
317 |
316
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) e. ( 0 [,] +oo ) ) |
318 |
317
|
fmpttd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
319 |
9
|
ffvelrnda |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. RR ) |
320 |
319
|
recnd |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. CC ) |
321 |
320
|
abscld |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( abs ` ( f ` t ) ) e. RR ) |
322 |
13
|
ffvelrnda |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. RR ) |
323 |
322
|
recnd |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. CC ) |
324 |
323
|
abscld |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( abs ` ( g ` t ) ) e. RR ) |
325 |
|
readdcl |
|- ( ( ( abs ` ( f ` t ) ) e. RR /\ ( abs ` ( g ` t ) ) e. RR ) -> ( ( abs ` ( f ` t ) ) + ( abs ` ( g ` t ) ) ) e. RR ) |
326 |
321 324 325
|
syl2an |
|- ( ( ( f e. dom S.1 /\ t e. RR ) /\ ( g e. dom S.1 /\ t e. RR ) ) -> ( ( abs ` ( f ` t ) ) + ( abs ` ( g ` t ) ) ) e. RR ) |
327 |
326
|
anandirs |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( abs ` ( f ` t ) ) + ( abs ` ( g ` t ) ) ) e. RR ) |
328 |
305
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR ) |
329 |
|
mulcl |
|- ( ( _i e. CC /\ ( g ` t ) e. CC ) -> ( _i x. ( g ` t ) ) e. CC ) |
330 |
12 323 329
|
sylancr |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( _i x. ( g ` t ) ) e. CC ) |
331 |
|
abstri |
|- ( ( ( f ` t ) e. CC /\ ( _i x. ( g ` t ) ) e. CC ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <_ ( ( abs ` ( f ` t ) ) + ( abs ` ( _i x. ( g ` t ) ) ) ) ) |
332 |
320 330 331
|
syl2an |
|- ( ( ( f e. dom S.1 /\ t e. RR ) /\ ( g e. dom S.1 /\ t e. RR ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <_ ( ( abs ` ( f ` t ) ) + ( abs ` ( _i x. ( g ` t ) ) ) ) ) |
333 |
332
|
anandirs |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <_ ( ( abs ` ( f ` t ) ) + ( abs ` ( _i x. ( g ` t ) ) ) ) ) |
334 |
|
absmul |
|- ( ( _i e. CC /\ ( g ` t ) e. CC ) -> ( abs ` ( _i x. ( g ` t ) ) ) = ( ( abs ` _i ) x. ( abs ` ( g ` t ) ) ) ) |
335 |
12 323 334
|
sylancr |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( abs ` ( _i x. ( g ` t ) ) ) = ( ( abs ` _i ) x. ( abs ` ( g ` t ) ) ) ) |
336 |
|
absi |
|- ( abs ` _i ) = 1 |
337 |
336
|
oveq1i |
|- ( ( abs ` _i ) x. ( abs ` ( g ` t ) ) ) = ( 1 x. ( abs ` ( g ` t ) ) ) |
338 |
335 337
|
eqtrdi |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( abs ` ( _i x. ( g ` t ) ) ) = ( 1 x. ( abs ` ( g ` t ) ) ) ) |
339 |
324
|
recnd |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( abs ` ( g ` t ) ) e. CC ) |
340 |
339
|
mulid2d |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( 1 x. ( abs ` ( g ` t ) ) ) = ( abs ` ( g ` t ) ) ) |
341 |
338 340
|
eqtrd |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( abs ` ( _i x. ( g ` t ) ) ) = ( abs ` ( g ` t ) ) ) |
342 |
341
|
adantll |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( _i x. ( g ` t ) ) ) = ( abs ` ( g ` t ) ) ) |
343 |
342
|
oveq2d |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( abs ` ( f ` t ) ) + ( abs ` ( _i x. ( g ` t ) ) ) ) = ( ( abs ` ( f ` t ) ) + ( abs ` ( g ` t ) ) ) ) |
344 |
333 343
|
breqtrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <_ ( ( abs ` ( f ` t ) ) + ( abs ` ( g ` t ) ) ) ) |
345 |
321
|
adantlr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( f ` t ) ) e. RR ) |
346 |
324
|
adantll |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( g ` t ) ) e. RR ) |
347 |
243
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR ) |
348 |
253
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) ) |
349 |
221
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ran f u. ran g ) C_ CC ) |
350 |
9
|
ffnd |
|- ( f e. dom S.1 -> f Fn RR ) |
351 |
|
fnfvelrn |
|- ( ( f Fn RR /\ t e. RR ) -> ( f ` t ) e. ran f ) |
352 |
350 351
|
sylan |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. ran f ) |
353 |
|
elun1 |
|- ( ( f ` t ) e. ran f -> ( f ` t ) e. ( ran f u. ran g ) ) |
354 |
352 353
|
syl |
|- ( ( f e. dom S.1 /\ t e. RR ) -> ( f ` t ) e. ( ran f u. ran g ) ) |
355 |
354
|
adantlr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( f ` t ) e. ( ran f u. ran g ) ) |
356 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ ( f ` t ) e. ( ran f u. ran g ) ) -> ( abs ` ( f ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) |
357 |
227 356
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ ( f ` t ) e. ( ran f u. ran g ) ) -> ( abs ` ( f ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) |
358 |
349 355 357
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( f ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) |
359 |
|
suprub |
|- ( ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) /\ ( abs ` ( f ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) -> ( abs ` ( f ` t ) ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
360 |
348 358 359
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( f ` t ) ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
361 |
13
|
ffnd |
|- ( g e. dom S.1 -> g Fn RR ) |
362 |
|
fnfvelrn |
|- ( ( g Fn RR /\ t e. RR ) -> ( g ` t ) e. ran g ) |
363 |
361 362
|
sylan |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. ran g ) |
364 |
|
elun2 |
|- ( ( g ` t ) e. ran g -> ( g ` t ) e. ( ran f u. ran g ) ) |
365 |
363 364
|
syl |
|- ( ( g e. dom S.1 /\ t e. RR ) -> ( g ` t ) e. ( ran f u. ran g ) ) |
366 |
365
|
adantll |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( g ` t ) e. ( ran f u. ran g ) ) |
367 |
|
fnfvima |
|- ( ( abs Fn CC /\ ( ran f u. ran g ) C_ CC /\ ( g ` t ) e. ( ran f u. ran g ) ) -> ( abs ` ( g ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) |
368 |
227 367
|
mp3an1 |
|- ( ( ( ran f u. ran g ) C_ CC /\ ( g ` t ) e. ( ran f u. ran g ) ) -> ( abs ` ( g ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) |
369 |
349 366 368
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( g ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) |
370 |
|
suprub |
|- ( ( ( ( abs " ( ran f u. ran g ) ) C_ RR /\ ( abs " ( ran f u. ran g ) ) =/= (/) /\ E. x e. RR A. y e. ( abs " ( ran f u. ran g ) ) y <_ x ) /\ ( abs ` ( g ` t ) ) e. ( abs " ( ran f u. ran g ) ) ) -> ( abs ` ( g ` t ) ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
371 |
348 369 370
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( g ` t ) ) <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) |
372 |
345 346 347 347 360 371
|
le2addd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( ( abs ` ( f ` t ) ) + ( abs ` ( g ` t ) ) ) <_ ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
373 |
296 327 328 344 372
|
letrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <_ ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
374 |
304
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) = ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
375 |
373 374
|
breqtrrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <_ ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
376 |
58 375
|
sylan2 |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) <_ ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
377 |
|
iftrue |
|- ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) = ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
378 |
377
|
adantl |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) = ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) |
379 |
|
iftrue |
|- ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) = ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
380 |
379
|
adantl |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) = ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
381 |
376 378 380
|
3brtr4d |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. ( u (,) w ) ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) |
382 |
381
|
ex |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) |
383 |
66
|
a1i |
|- ( -. t e. ( u (,) w ) -> 0 <_ 0 ) |
384 |
|
iffalse |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) = 0 ) |
385 |
|
iffalse |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) = 0 ) |
386 |
383 384 385
|
3brtr4d |
|- ( -. t e. ( u (,) w ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) |
387 |
382 386
|
pm2.61d1 |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) |
388 |
387
|
ralrimivw |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) |
389 |
|
ovex |
|- ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. _V |
390 |
389 72
|
ifex |
|- if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) e. _V |
391 |
390
|
a1i |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ t e. RR ) -> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) e. _V ) |
392 |
|
eqidd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) = ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) |
393 |
22 79 391 82 392
|
ofrfval2 |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) <-> A. t e. RR if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) <_ if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) |
394 |
388 393
|
mpbird |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) |
395 |
|
itg2le |
|- ( ( ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) oR <_ ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) ) |
396 |
302 318 394 395
|
syl3anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) ) |
397 |
396
|
adantr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) <_ ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) ) |
398 |
|
mblvol |
|- ( ( u (,) w ) e. dom vol -> ( vol ` ( u (,) w ) ) = ( vol* ` ( u (,) w ) ) ) |
399 |
42 398
|
ax-mp |
|- ( vol ` ( u (,) w ) ) = ( vol* ` ( u (,) w ) ) |
400 |
|
ovolioo |
|- ( ( u e. RR /\ w e. RR /\ u <_ w ) -> ( vol* ` ( u (,) w ) ) = ( w - u ) ) |
401 |
399 400
|
syl5eq |
|- ( ( u e. RR /\ w e. RR /\ u <_ w ) -> ( vol ` ( u (,) w ) ) = ( w - u ) ) |
402 |
|
resubcl |
|- ( ( w e. RR /\ u e. RR ) -> ( w - u ) e. RR ) |
403 |
402
|
ancoms |
|- ( ( u e. RR /\ w e. RR ) -> ( w - u ) e. RR ) |
404 |
403
|
3adant3 |
|- ( ( u e. RR /\ w e. RR /\ u <_ w ) -> ( w - u ) e. RR ) |
405 |
401 404
|
eqeltrd |
|- ( ( u e. RR /\ w e. RR /\ u <_ w ) -> ( vol ` ( u (,) w ) ) e. RR ) |
406 |
|
elrege0 |
|- ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. ( 0 [,) +oo ) <-> ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. RR /\ 0 <_ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) |
407 |
243 310 406
|
sylanbrc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. ( 0 [,) +oo ) ) |
408 |
|
ge0addcl |
|- ( ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. ( 0 [,) +oo ) /\ sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) e. ( 0 [,) +oo ) ) -> ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,) +oo ) ) |
409 |
407 407 408
|
syl2anc |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) + sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,) +oo ) ) |
410 |
304 409
|
eqeltrd |
|- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,) +oo ) ) |
411 |
|
itg2const |
|- ( ( ( u (,) w ) e. dom vol /\ ( vol ` ( u (,) w ) ) e. RR /\ ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,) +oo ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) = ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) x. ( vol ` ( u (,) w ) ) ) ) |
412 |
42 411
|
mp3an1 |
|- ( ( ( vol ` ( u (,) w ) ) e. RR /\ ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. ( 0 [,) +oo ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) = ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) x. ( vol ` ( u (,) w ) ) ) ) |
413 |
405 410 412
|
syl2anr |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) , 0 ) ) ) = ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) x. ( vol ` ( u (,) w ) ) ) ) |
414 |
397 413
|
breqtrd |
|- ( ( ( f e. dom S.1 /\ g e. dom S.1 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) <_ ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) x. ( vol ` ( u (,) w ) ) ) ) |
415 |
414
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) <_ ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) x. ( vol ` ( u (,) w ) ) ) ) |
416 |
415
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) <_ ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) x. ( vol ` ( u (,) w ) ) ) ) |
417 |
90
|
ad3antlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
418 |
405
|
adantl |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( vol ` ( u (,) w ) ) e. RR ) |
419 |
266
|
adantll |
|- ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
420 |
419
|
adantr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
421 |
417 418 420
|
ledivmuld |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <_ ( vol ` ( u (,) w ) ) <-> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) <_ ( ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) x. ( vol ` ( u (,) w ) ) ) ) ) |
422 |
416 421
|
mpbird |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <_ ( vol ` ( u (,) w ) ) ) |
423 |
|
abssubge0 |
|- ( ( u e. RR /\ w e. RR /\ u <_ w ) -> ( abs ` ( w - u ) ) = ( w - u ) ) |
424 |
400 423
|
eqtr4d |
|- ( ( u e. RR /\ w e. RR /\ u <_ w ) -> ( vol* ` ( u (,) w ) ) = ( abs ` ( w - u ) ) ) |
425 |
399 424
|
syl5eq |
|- ( ( u e. RR /\ w e. RR /\ u <_ w ) -> ( vol ` ( u (,) w ) ) = ( abs ` ( w - u ) ) ) |
426 |
425
|
adantl |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( vol ` ( u (,) w ) ) = ( abs ` ( w - u ) ) ) |
427 |
422 426
|
breqtrd |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. RR /\ w e. RR /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <_ ( abs ` ( w - u ) ) ) |
428 |
295 427
|
syldan |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <_ ( abs ` ( w - u ) ) ) |
429 |
428
|
adantllr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <_ ( abs ` ( w - u ) ) ) |
430 |
429
|
adantlr |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <_ ( abs ` ( w - u ) ) ) |
431 |
430
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) <_ ( abs ` ( w - u ) ) ) |
432 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) |
433 |
270 283 289 431 432
|
lelttrd |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) |
434 |
90
|
adantl |
|- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
435 |
434
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) e. RR ) |
436 |
130
|
adantl |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( y / 2 ) e. RR ) |
437 |
419
|
adantlr |
|- ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
438 |
437
|
adantr |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) e. RR+ ) |
439 |
435 436 438
|
ltdiv1d |
|- ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) < ( y / 2 ) <-> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
440 |
439
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) < ( y / 2 ) <-> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) ) |
441 |
433 440
|
mpbird |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) < ( y / 2 ) ) |
442 |
201
|
adantllr |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) < ( y / 2 ) ) |
443 |
442
|
3adantr3 |
|- ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) < ( y / 2 ) ) |
444 |
443
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) < ( y / 2 ) ) |
445 |
91 207 208 208 441 444
|
lt2addd |
|- ( ( ( ( ( ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) /\ ( S.2 ` ( t e. RR |-> ( abs ` ( if ( t e. D , ( F ` t ) , 0 ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) ) ) < ( y / 2 ) ) /\ E. r e. ( ran f u. ran g ) r =/= 0 ) /\ y e. RR+ ) /\ ( u e. ( A [,] B ) /\ w e. ( A [,] B ) /\ u <_ w ) ) /\ ( abs ` ( w - u ) ) < ( ( y / 2 ) / ( 2 x. sup ( ( abs " ( ran f u. ran g ) ) , RR , < ) ) ) ) -> ( ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) , 0 ) ) ) + ( S.2 ` ( t e. RR |-> if ( t e. ( u (,) w ) , ( abs ` ( ( F ` t ) - ( ( f ` t ) + ( _i x. ( g ` t ) ) ) ) ) , 0 ) ) ) ) < ( ( y / 2 ) + ( y / 2 ) ) ) |