Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) ∈ ℂ ) |
3 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
4 |
3
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
6 |
|
subcl |
⊢ ( ( ( 𝐺 ‘ 𝑡 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
7 |
2 5 6
|
syl2anr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
8 |
7
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
9 |
8
|
abscld |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
10 |
9
|
rexrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ) |
11 |
8
|
absge0d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) |
12 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
13 |
10 11 12
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ) |
14 |
13
|
fmpttd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
16 |
|
reex |
⊢ ℝ ∈ V |
17 |
16
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ℝ ∈ V ) |
18 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ V ) |
19 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ V ) |
20 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
21 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
22 |
17 18 19 20 21
|
offval2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
24 |
|
id |
⊢ ( 𝐺 : ℝ ⟶ ℝ → 𝐺 : ℝ ⟶ ℝ ) |
25 |
24
|
feqmptd |
⊢ ( 𝐺 : ℝ ⟶ ℝ → 𝐺 = ( 𝑡 ∈ ℝ ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
26 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
27 |
26
|
a1i |
⊢ ( 𝐺 : ℝ ⟶ ℝ → abs : ℂ ⟶ ℝ ) |
28 |
27
|
feqmptd |
⊢ ( 𝐺 : ℝ ⟶ ℝ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑡 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
30 |
2 25 28 29
|
fmptco |
⊢ ( 𝐺 : ℝ ⟶ ℝ → ( abs ∘ 𝐺 ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( abs ∘ 𝐺 ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
32 |
|
iblmbf |
⊢ ( 𝐺 ∈ 𝐿1 → 𝐺 ∈ MblFn ) |
33 |
|
ftc1anclem1 |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝐺 ∈ MblFn ) → ( abs ∘ 𝐺 ) ∈ MblFn ) |
34 |
32 33
|
sylan2 |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝐺 ∈ 𝐿1 ) → ( abs ∘ 𝐺 ) ∈ MblFn ) |
35 |
34
|
ancoms |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( abs ∘ 𝐺 ) ∈ MblFn ) |
36 |
31 35
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ) |
37 |
36
|
3adant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ) |
38 |
2
|
abscld |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ) |
39 |
2
|
absge0d |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
40 |
|
elrege0 |
⊢ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
41 |
38 39 40
|
sylanbrc |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ) |
42 |
41
|
fmpttd |
⊢ ( 𝐺 : ℝ ⟶ ℝ → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
43 |
42
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
44 |
|
iftrue |
⊢ ( 𝑡 ∈ ℝ → if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) = ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
45 |
44
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
46 |
45
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
47 |
1
|
adantll |
⊢ ( ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) ∈ ℝ ) |
48 |
|
simpr |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → 𝐺 : ℝ ⟶ ℝ ) |
49 |
48
|
feqmptd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → 𝐺 = ( 𝑡 ∈ ℝ ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
50 |
|
simpl |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → 𝐺 ∈ 𝐿1 ) |
51 |
49 50
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( 𝐺 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
52 |
47 51 36
|
iblabsnc |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
53 |
38
|
adantll |
⊢ ( ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ) |
54 |
39
|
adantll |
⊢ ( ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
55 |
53 54
|
iblpos |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
56 |
52 55
|
mpbid |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) |
57 |
56
|
simprd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) |
58 |
46 57
|
eqeltrrid |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
59 |
58
|
3adant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
60 |
5
|
abscld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
61 |
5
|
absge0d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
62 |
|
elrege0 |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
63 |
60 61 62
|
sylanbrc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ) |
64 |
63
|
fmpttd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
65 |
64
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
66 |
|
iftrue |
⊢ ( 𝑡 ∈ ℝ → if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
67 |
66
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
68 |
67
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
69 |
3
|
feqmptd |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 = ( 𝑡 ∈ ℝ ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
70 |
|
i1fibl |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1 ) |
71 |
69 70
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
72 |
26
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → abs : ℂ ⟶ ℝ ) |
73 |
72
|
feqmptd |
⊢ ( 𝐹 ∈ dom ∫1 → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
74 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑡 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
75 |
5 69 73 74
|
fmptco |
⊢ ( 𝐹 ∈ dom ∫1 → ( abs ∘ 𝐹 ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
76 |
|
i1fmbf |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn ) |
77 |
|
ftc1anclem1 |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( abs ∘ 𝐹 ) ∈ MblFn ) |
78 |
3 76 77
|
syl2anc |
⊢ ( 𝐹 ∈ dom ∫1 → ( abs ∘ 𝐹 ) ∈ MblFn ) |
79 |
75 78
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
80 |
4 71 79
|
iblabsnc |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
81 |
60 61
|
iblpos |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
82 |
80 81
|
mpbid |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) |
83 |
82
|
simprd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) |
84 |
68 83
|
eqeltrrid |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
85 |
84
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
86 |
37 43 59 65 85
|
itg2addnc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
87 |
23 86
|
eqtr3d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
88 |
59 85
|
readdcld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
89 |
87 88
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
90 |
|
readdcl |
⊢ ( ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
91 |
38 60 90
|
syl2anr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
92 |
91
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
93 |
92
|
rexrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ) |
94 |
38
|
adantll |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ) |
95 |
60
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
96 |
39
|
adantll |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
97 |
61
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
98 |
94 95 96 97
|
addge0d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
99 |
|
elxrge0 |
⊢ ( ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ∧ 0 ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
100 |
93 98 99
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ) |
101 |
100
|
fmpttd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
102 |
101
|
3adant2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
103 |
|
abs2dif2 |
⊢ ( ( ( 𝐺 ‘ 𝑡 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
104 |
2 5 103
|
syl2anr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
105 |
104
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
106 |
105
|
ralrimiva |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ∀ 𝑡 ∈ ℝ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
107 |
16
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ℝ ∈ V ) |
108 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
109 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
110 |
107 9 92 108 109
|
ofrfval2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
111 |
106 110
|
mpbird |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
112 |
111
|
3adant2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
113 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
114 |
15 102 112 113
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
115 |
|
itg2lecl |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
116 |
15 89 114 115
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |