| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) ∈ ℂ ) |
| 3 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 4 |
3
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 6 |
|
subcl |
⊢ ( ( ( 𝐺 ‘ 𝑡 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 7 |
2 5 6
|
syl2anr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 8 |
7
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 9 |
8
|
abscld |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ) |
| 11 |
8
|
absge0d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 12 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 13 |
10 11 12
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 14 |
13
|
fmpttd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 15 |
14
|
3adant2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 16 |
|
reex |
⊢ ℝ ∈ V |
| 17 |
16
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ℝ ∈ V ) |
| 18 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ V ) |
| 19 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ V ) |
| 20 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 21 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 22 |
17 18 19 20 21
|
offval2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 24 |
|
id |
⊢ ( 𝐺 : ℝ ⟶ ℝ → 𝐺 : ℝ ⟶ ℝ ) |
| 25 |
24
|
feqmptd |
⊢ ( 𝐺 : ℝ ⟶ ℝ → 𝐺 = ( 𝑡 ∈ ℝ ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
| 26 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 27 |
26
|
a1i |
⊢ ( 𝐺 : ℝ ⟶ ℝ → abs : ℂ ⟶ ℝ ) |
| 28 |
27
|
feqmptd |
⊢ ( 𝐺 : ℝ ⟶ ℝ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑡 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
| 30 |
2 25 28 29
|
fmptco |
⊢ ( 𝐺 : ℝ ⟶ ℝ → ( abs ∘ 𝐺 ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( abs ∘ 𝐺 ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 32 |
|
iblmbf |
⊢ ( 𝐺 ∈ 𝐿1 → 𝐺 ∈ MblFn ) |
| 33 |
|
ftc1anclem1 |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝐺 ∈ MblFn ) → ( abs ∘ 𝐺 ) ∈ MblFn ) |
| 34 |
32 33
|
sylan2 |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝐺 ∈ 𝐿1 ) → ( abs ∘ 𝐺 ) ∈ MblFn ) |
| 35 |
34
|
ancoms |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( abs ∘ 𝐺 ) ∈ MblFn ) |
| 36 |
31 35
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ) |
| 37 |
36
|
3adant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ) |
| 38 |
2
|
abscld |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ) |
| 39 |
2
|
absge0d |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
| 40 |
|
elrege0 |
⊢ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 41 |
38 39 40
|
sylanbrc |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ) |
| 42 |
41
|
fmpttd |
⊢ ( 𝐺 : ℝ ⟶ ℝ → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 43 |
42
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 44 |
|
iftrue |
⊢ ( 𝑡 ∈ ℝ → if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) = ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
| 45 |
44
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
| 46 |
45
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 47 |
1
|
adantll |
⊢ ( ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( 𝐺 ‘ 𝑡 ) ∈ ℝ ) |
| 48 |
|
simpr |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → 𝐺 : ℝ ⟶ ℝ ) |
| 49 |
48
|
feqmptd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → 𝐺 = ( 𝑡 ∈ ℝ ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
| 50 |
|
simpl |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → 𝐺 ∈ 𝐿1 ) |
| 51 |
49 50
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( 𝐺 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 52 |
47 51 36
|
iblabsnc |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
| 53 |
38
|
adantll |
⊢ ( ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ) |
| 54 |
39
|
adantll |
⊢ ( ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
| 55 |
53 54
|
iblpos |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 56 |
52 55
|
mpbid |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 57 |
56
|
simprd |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) |
| 58 |
46 57
|
eqeltrrid |
⊢ ( ( 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 59 |
58
|
3adant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 60 |
5
|
abscld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 61 |
5
|
absge0d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 62 |
|
elrege0 |
⊢ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 63 |
60 61 62
|
sylanbrc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ( 0 [,) +∞ ) ) |
| 64 |
63
|
fmpttd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 65 |
64
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 66 |
|
iftrue |
⊢ ( 𝑡 ∈ ℝ → if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 67 |
66
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 68 |
67
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 69 |
3
|
feqmptd |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 = ( 𝑡 ∈ ℝ ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 70 |
|
i1fibl |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1 ) |
| 71 |
69 70
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 72 |
26
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → abs : ℂ ⟶ ℝ ) |
| 73 |
72
|
feqmptd |
⊢ ( 𝐹 ∈ dom ∫1 → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑡 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 75 |
5 69 73 74
|
fmptco |
⊢ ( 𝐹 ∈ dom ∫1 → ( abs ∘ 𝐹 ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 76 |
|
i1fmbf |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn ) |
| 77 |
|
ftc1anclem1 |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝐹 ∈ MblFn ) → ( abs ∘ 𝐹 ) ∈ MblFn ) |
| 78 |
3 76 77
|
syl2anc |
⊢ ( 𝐹 ∈ dom ∫1 → ( abs ∘ 𝐹 ) ∈ MblFn ) |
| 79 |
75 78
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
| 80 |
4 71 79
|
iblabsnc |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
| 81 |
60 61
|
iblpos |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 82 |
80 81
|
mpbid |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 83 |
82
|
simprd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) , 0 ) ) ) ∈ ℝ ) |
| 84 |
68 83
|
eqeltrrid |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 85 |
84
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ∈ ℝ ) |
| 86 |
37 43 59 65 85
|
itg2addnc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 87 |
23 86
|
eqtr3d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 88 |
59 85
|
readdcld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 89 |
87 88
|
eqeltrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 90 |
|
readdcl |
⊢ ( ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 91 |
38 60 90
|
syl2anr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 92 |
91
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 93 |
92
|
rexrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ) |
| 94 |
38
|
adantll |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ℝ ) |
| 95 |
60
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ∈ ℝ ) |
| 96 |
39
|
adantll |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
| 97 |
61
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
| 98 |
94 95 96 97
|
addge0d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 99 |
|
elxrge0 |
⊢ ( ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ* ∧ 0 ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 100 |
93 98 99
|
sylanbrc |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 101 |
100
|
fmpttd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 102 |
101
|
3adant2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 103 |
|
abs2dif2 |
⊢ ( ( ( 𝐺 ‘ 𝑡 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 104 |
2 5 103
|
syl2anr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝐺 : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 105 |
104
|
anandirs |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 106 |
105
|
ralrimiva |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ∀ 𝑡 ∈ ℝ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 107 |
16
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ℝ ∈ V ) |
| 108 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 109 |
|
eqidd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 110 |
107 9 92 108 109
|
ofrfval2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ↔ ∀ 𝑡 ∈ ℝ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ≤ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 111 |
106 110
|
mpbird |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 112 |
111
|
3adant2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) |
| 113 |
|
itg2le |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 114 |
15 102 112 113
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) |
| 115 |
|
itg2lecl |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( ( abs ‘ ( 𝐺 ‘ 𝑡 ) ) + ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 116 |
15 89 114 115
|
syl3anc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ 𝐿1 ∧ 𝐺 : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |