Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1anc.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
2 |
|
ftc1anc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ftc1anc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
ftc1anc.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
ftc1anc.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ftc1anc.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
7 |
|
ftc1anc.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
8 |
|
ftc1anc.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
9 |
|
iftrue |
⊢ ( 𝑡 ∈ ℝ → if ( 𝑡 ∈ ℝ , ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) , 0 ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
10 |
9
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
11 |
10
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) |
12 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
13 |
|
0cnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑡 ∈ 𝐷 ) → 0 ∈ ℂ ) |
14 |
12 13
|
ifclda |
⊢ ( 𝜑 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ∈ ℂ ) |
15 |
14
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
17 |
|
rembl |
⊢ ℝ ∈ dom vol |
18 |
17
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
19 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
20 |
|
eldifn |
⊢ ( 𝑡 ∈ ( ℝ ∖ 𝐷 ) → ¬ 𝑡 ∈ 𝐷 ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ℝ ∖ 𝐷 ) ) → ¬ 𝑡 ∈ 𝐷 ) |
22 |
|
iffalse |
⊢ ( ¬ 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) = 0 ) |
23 |
22
|
fveq2d |
⊢ ( ¬ 𝑡 ∈ 𝐷 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) = ( ℜ ‘ 0 ) ) |
24 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
25 |
23 24
|
eqtrdi |
⊢ ( ¬ 𝑡 ∈ 𝐷 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) = 0 ) |
26 |
21 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ℝ ∖ 𝐷 ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) = 0 ) |
27 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝐷 → if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) = ( 𝐹 ‘ 𝑡 ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝑡 ∈ 𝐷 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) = ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
29 |
28
|
mpteq2ia |
⊢ ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
30 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
31 |
30 7
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
32 |
12
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐷 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) ) |
33 |
31 32
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ∧ ( 𝑡 ∈ 𝐷 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) ) |
34 |
33
|
simpld |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐿1 ) |
35 |
29 34
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ 𝐿1 ) |
36 |
6 18 19 26 35
|
iblss2 |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ 𝐿1 ) |
37 |
15
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ) |
39 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
40 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
41 |
40
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
42 |
41
|
feqmptd |
⊢ ( 𝜑 → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
43 |
|
fveq2 |
⊢ ( 𝑥 = ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
44 |
38 39 42 43
|
fmptco |
⊢ ( 𝜑 → ( abs ∘ ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) |
45 |
16
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) : ℝ ⟶ ℝ ) |
46 |
|
iblmbf |
⊢ ( 𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn ) |
47 |
7 46
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
48 |
30 47
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ) |
49 |
12
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ MblFn ↔ ( ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐷 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) ) |
50 |
48 49
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ∧ ( 𝑡 ∈ 𝐷 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) ) |
51 |
50
|
simpld |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑡 ) ) ) ∈ MblFn ) |
52 |
29 51
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ MblFn ) |
53 |
6 18 19 26 52
|
mbfss |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ MblFn ) |
54 |
|
ftc1anclem1 |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) : ℝ ⟶ ℝ ∧ ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ MblFn ) → ( abs ∘ ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∈ MblFn ) |
55 |
45 53 54
|
syl2anc |
⊢ ( 𝜑 → ( abs ∘ ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∈ MblFn ) |
56 |
44 55
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∈ MblFn ) |
57 |
16 36 56
|
iblabsnc |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∈ 𝐿1 ) |
58 |
37
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
60 |
37
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
62 |
59 61
|
iblpos |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∈ 𝐿1 ↔ ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
63 |
57 62
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
64 |
63
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 𝑡 ∈ ℝ , ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) , 0 ) ) ) ∈ ℝ ) |
65 |
11 64
|
eqeltrrid |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ∈ ℝ ) |
66 |
|
ltsubrp |
⊢ ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ∈ ℝ ∧ 𝑌 ∈ ℝ+ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
67 |
65 66
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
68 |
|
rpre |
⊢ ( 𝑌 ∈ ℝ+ → 𝑌 ∈ ℝ ) |
69 |
|
resubcl |
⊢ ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ∈ ℝ ) |
70 |
65 68 69
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ∈ ℝ ) |
71 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ∈ ℝ ) |
72 |
70 71
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ↔ ¬ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) |
73 |
67 72
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ¬ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) |
74 |
58
|
rexrd |
⊢ ( 𝜑 → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ* ) |
75 |
|
elxrge0 |
⊢ ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) |
76 |
74 60 75
|
sylanbrc |
⊢ ( 𝜑 → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ( 0 [,] +∞ ) ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ( 0 [,] +∞ ) ) |
78 |
77
|
fmpttd |
⊢ ( 𝜑 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
80 |
70
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ∈ ℝ* ) |
81 |
|
itg2leub |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ∈ ℝ* ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) ) |
82 |
79 80 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) ) |
83 |
73 82
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ¬ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) |
84 |
|
rexanali |
⊢ ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ↔ ¬ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) |
85 |
83 84
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) |
86 |
70
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ∈ ℝ ) |
87 |
|
itg1cl |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) |
88 |
87
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) |
89 |
|
eqid |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
90 |
89
|
i1fpos |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 ) |
91 |
|
0re |
⊢ 0 ∈ ℝ |
92 |
|
i1ff |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 : ℝ ⟶ ℝ ) |
93 |
92
|
ffvelrnda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) |
94 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
95 |
91 93 94
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
96 |
95
|
ralrimiva |
⊢ ( 𝑔 ∈ dom ∫1 → ∀ 𝑡 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
97 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
98 |
97
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ℝ ⊆ ℂ ) |
99 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑡 ) ∈ V |
100 |
|
c0ex |
⊢ 0 ∈ V |
101 |
99 100
|
ifex |
⊢ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ V |
102 |
101 89
|
fnmpti |
⊢ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) Fn ℝ |
103 |
102
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) Fn ℝ ) |
104 |
98 103
|
0pledm |
⊢ ( 𝑔 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
105 |
|
reex |
⊢ ℝ ∈ V |
106 |
105
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ℝ ∈ V ) |
107 |
100
|
a1i |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → 0 ∈ V ) |
108 |
|
ifcl |
⊢ ( ( ( 𝑔 ‘ 𝑡 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ) |
109 |
93 91 108
|
sylancl |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ) |
110 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) |
111 |
110
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ( ℝ × { 0 } ) = ( 𝑡 ∈ ℝ ↦ 0 ) ) |
112 |
|
eqidd |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
113 |
106 107 109 111 112
|
ofrfval2 |
⊢ ( 𝑔 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
114 |
104 113
|
bitrd |
⊢ ( 𝑔 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
115 |
96 114
|
mpbird |
⊢ ( 𝑔 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
116 |
|
itg2itg1 |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
117 |
90 115 116
|
syl2anc |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
118 |
|
itg1cl |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
119 |
90 118
|
syl |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
120 |
117 119
|
eqeltrd |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
121 |
120
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
122 |
|
ltnle |
⊢ ( ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ∈ ℝ ∧ ( ∫1 ‘ 𝑔 ) ∈ ℝ ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫1 ‘ 𝑔 ) ↔ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) |
123 |
70 87 122
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫1 ‘ 𝑔 ) ↔ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) |
124 |
123
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫1 ‘ 𝑔 ) ) |
125 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
126 |
91 93 125
|
sylancr |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
127 |
126
|
ralrimiva |
⊢ ( 𝑔 ∈ dom ∫1 → ∀ 𝑡 ∈ ℝ ( 𝑔 ‘ 𝑡 ) ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
128 |
92
|
feqmptd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 = ( 𝑡 ∈ ℝ ↦ ( 𝑔 ‘ 𝑡 ) ) ) |
129 |
106 93 109 128 112
|
ofrfval2 |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ↔ ∀ 𝑡 ∈ ℝ ( 𝑔 ‘ 𝑡 ) ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
130 |
127 129
|
mpbird |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
131 |
|
itg1le |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
132 |
90 130 131
|
mpd3an23 |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
133 |
132 117
|
breqtrrd |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
134 |
133
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
135 |
86 88 121 124 134
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
136 |
135
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
137 |
|
i1fmbf |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ MblFn ) |
138 |
90 137
|
syl |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ MblFn ) |
139 |
138
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ MblFn ) |
140 |
|
elrege0 |
⊢ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
141 |
109 95 140
|
sylanbrc |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
142 |
141
|
fmpttd |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
143 |
142
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
144 |
120
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
145 |
109
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℂ ) |
146 |
145
|
negcld |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℂ ) |
147 |
145 146
|
ifcld |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ) |
148 |
|
subcl |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ∧ if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℂ ) |
149 |
37 147 148
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℂ ) |
150 |
149
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℂ ) |
151 |
150
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ∈ ℝ ) |
152 |
150
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → 0 ≤ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) |
153 |
|
elrege0 |
⊢ ( ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
154 |
151 152 153
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ∈ ( 0 [,) +∞ ) ) |
155 |
154
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
156 |
|
eleq1w |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ∈ 𝐷 ↔ 𝑡 ∈ 𝐷 ) ) |
157 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑡 ) ) |
158 |
156 157
|
ifbieq1d |
⊢ ( 𝑥 = 𝑡 → if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) |
159 |
158
|
fveq2d |
⊢ ( 𝑥 = 𝑡 → ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
160 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
161 |
|
fvex |
⊢ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ V |
162 |
159 160 161
|
fvmpt |
⊢ ( 𝑡 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) = ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
163 |
159
|
breq2d |
⊢ ( 𝑥 = 𝑡 → ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
164 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) |
165 |
164
|
breq2d |
⊢ ( 𝑥 = 𝑡 → ( 0 ≤ ( 𝑔 ‘ 𝑥 ) ↔ 0 ≤ ( 𝑔 ‘ 𝑡 ) ) ) |
166 |
165 164
|
ifbieq1d |
⊢ ( 𝑥 = 𝑡 → if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
167 |
166
|
negeqd |
⊢ ( 𝑥 = 𝑡 → - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) = - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
168 |
163 166 167
|
ifbieq12d |
⊢ ( 𝑥 = 𝑡 → if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
169 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) |
170 |
|
negex |
⊢ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ V |
171 |
101 170
|
ifex |
⊢ if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ V |
172 |
168 169 171
|
fvmpt |
⊢ ( 𝑡 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
173 |
162 172
|
oveq12d |
⊢ ( 𝑡 ∈ ℝ → ( ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) − ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
174 |
173
|
fveq2d |
⊢ ( 𝑡 ∈ ℝ → ( abs ‘ ( ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) − ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) ) = ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) |
175 |
174
|
mpteq2ia |
⊢ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) − ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) |
176 |
175
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) − ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
177 |
105
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
178 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ V |
179 |
178 100
|
ifex |
⊢ if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ∈ V |
180 |
179 100
|
ifex |
⊢ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ∈ V |
181 |
180
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ∈ V ) |
182 |
|
ovex |
⊢ ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ∈ V |
183 |
100 182
|
ifex |
⊢ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∈ V |
184 |
183
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∈ V ) |
185 |
|
ffn |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → 𝐹 Fn 𝐷 ) |
186 |
|
frn |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → ran 𝐹 ⊆ ℂ ) |
187 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
188 |
|
ffn |
⊢ ( ℜ : ℂ ⟶ ℝ → ℜ Fn ℂ ) |
189 |
187 188
|
ax-mp |
⊢ ℜ Fn ℂ |
190 |
|
fnco |
⊢ ( ( ℜ Fn ℂ ∧ 𝐹 Fn 𝐷 ∧ ran 𝐹 ⊆ ℂ ) → ( ℜ ∘ 𝐹 ) Fn 𝐷 ) |
191 |
189 190
|
mp3an1 |
⊢ ( ( 𝐹 Fn 𝐷 ∧ ran 𝐹 ⊆ ℂ ) → ( ℜ ∘ 𝐹 ) Fn 𝐷 ) |
192 |
185 186 191
|
syl2anc |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → ( ℜ ∘ 𝐹 ) Fn 𝐷 ) |
193 |
|
elpreima |
⊢ ( ( ℜ ∘ 𝐹 ) Fn 𝐷 → ( 𝑥 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) ) |
194 |
8 192 193
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) ) |
195 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐷 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : 𝐷 ⟶ ℝ ) |
196 |
187 8 195
|
sylancr |
⊢ ( 𝜑 → ( ℜ ∘ 𝐹 ) : 𝐷 ⟶ ℝ ) |
197 |
196
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
198 |
197
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 0 ≤ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ↔ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) |
199 |
|
elrege0 |
⊢ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
200 |
198 199
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 0 ≤ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ↔ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
201 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℂ ∧ 𝑥 ∈ 𝐷 ) → ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
202 |
8 201
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
203 |
202
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 0 ≤ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
204 |
200 203
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
205 |
204
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
206 |
194 205
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
207 |
206
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
208 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐷 ) ) |
209 |
208
|
baibr |
⊢ ( 𝑥 ∈ ℝ → ( ¬ 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ ( ℝ ∖ 𝐷 ) ) ) |
210 |
|
0le0 |
⊢ 0 ≤ 0 |
211 |
210 24
|
breqtrri |
⊢ 0 ≤ ( ℜ ‘ 0 ) |
212 |
211
|
biantru |
⊢ ( ¬ 𝑥 ∈ 𝐷 ↔ ( ¬ 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ 0 ) ) ) |
213 |
209 212
|
bitr3di |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( ℝ ∖ 𝐷 ) ↔ ( ¬ 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ 0 ) ) ) ) |
214 |
213
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ℝ ∖ 𝐷 ) ↔ ( ¬ 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ 0 ) ) ) ) |
215 |
207 214
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∨ 𝑥 ∈ ( ℝ ∖ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∨ ( ¬ 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ 0 ) ) ) ) ) |
216 |
|
elun |
⊢ ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ↔ ( 𝑥 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∨ 𝑥 ∈ ( ℝ ∖ 𝐷 ) ) ) |
217 |
|
fveq2 |
⊢ ( if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) → ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
218 |
217
|
breq2d |
⊢ ( if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) → ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
219 |
|
fveq2 |
⊢ ( if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 → ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( ℜ ‘ 0 ) ) |
220 |
219
|
breq2d |
⊢ ( if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 → ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ 0 ≤ ( ℜ ‘ 0 ) ) ) |
221 |
218 220
|
elimif |
⊢ ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∨ ( ¬ 𝑥 ∈ 𝐷 ∧ 0 ≤ ( ℜ ‘ 0 ) ) ) ) |
222 |
215 216 221
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ↔ 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
223 |
222
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) |
224 |
223
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) ) |
225 |
222
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) |
226 |
225
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ) |
227 |
177 181 184 224 226
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) + if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ) ) |
228 |
|
ovif12 |
⊢ ( if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) + if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ( if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) + 0 ) , ( 0 + ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) |
229 |
92
|
ffvelrnda |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
230 |
229
|
recnd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℂ ) |
231 |
|
0cn |
⊢ 0 ∈ ℂ |
232 |
|
ifcl |
⊢ ( ( ( 𝑔 ‘ 𝑥 ) ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ∈ ℂ ) |
233 |
230 231 232
|
sylancl |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ∈ ℂ ) |
234 |
233
|
addid1d |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) + 0 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) |
235 |
233
|
mulm1d |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) = - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) |
236 |
235
|
oveq2d |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 + ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) = ( 0 + - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) |
237 |
233
|
negcld |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ∈ ℂ ) |
238 |
237
|
addid2d |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 + - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) = - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) |
239 |
236 238
|
eqtrd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 + ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) = - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) |
240 |
234 239
|
ifeq12d |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ( if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) + 0 ) , ( 0 + ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) |
241 |
228 240
|
syl5eq |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) + if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) |
242 |
241
|
mpteq2dva |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) + if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) |
243 |
227 242
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) |
244 |
|
0xr |
⊢ 0 ∈ ℝ* |
245 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
246 |
|
0ltpnf |
⊢ 0 < +∞ |
247 |
|
snunioo |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → ( { 0 } ∪ ( 0 (,) +∞ ) ) = ( 0 [,) +∞ ) ) |
248 |
244 245 246 247
|
mp3an |
⊢ ( { 0 } ∪ ( 0 (,) +∞ ) ) = ( 0 [,) +∞ ) |
249 |
248
|
imaeq2i |
⊢ ( ◡ ( ℜ ∘ 𝐹 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) |
250 |
|
imaundi |
⊢ ( ◡ ( ℜ ∘ 𝐹 ) “ ( { 0 } ∪ ( 0 (,) +∞ ) ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∪ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 (,) +∞ ) ) ) |
251 |
249 250
|
eqtr3i |
⊢ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∪ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 (,) +∞ ) ) ) |
252 |
|
ismbfcn |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
253 |
8 252
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
254 |
47 253
|
mpbid |
⊢ ( 𝜑 → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) |
255 |
254
|
simpld |
⊢ ( 𝜑 → ( ℜ ∘ 𝐹 ) ∈ MblFn ) |
256 |
|
mbfimasn |
⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : 𝐷 ⟶ ℝ ∧ 0 ∈ ℝ ) → ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∈ dom vol ) |
257 |
91 256
|
mp3an3 |
⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : 𝐷 ⟶ ℝ ) → ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∈ dom vol ) |
258 |
|
mbfima |
⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : 𝐷 ⟶ ℝ ) → ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) |
259 |
|
unmbl |
⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∈ dom vol ∧ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∪ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
260 |
257 258 259
|
syl2anc |
⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : 𝐷 ⟶ ℝ ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∪ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
261 |
255 196 260
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( ℜ ∘ 𝐹 ) “ { 0 } ) ∪ ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
262 |
251 261
|
eqeltrid |
⊢ ( 𝜑 → ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∈ dom vol ) |
263 |
8
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
264 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
265 |
47 264
|
syl |
⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
266 |
263 265
|
eqeltrrd |
⊢ ( 𝜑 → 𝐷 ∈ dom vol ) |
267 |
|
difmbl |
⊢ ( ( ℝ ∈ dom vol ∧ 𝐷 ∈ dom vol ) → ( ℝ ∖ 𝐷 ) ∈ dom vol ) |
268 |
17 266 267
|
sylancr |
⊢ ( 𝜑 → ( ℝ ∖ 𝐷 ) ∈ dom vol ) |
269 |
|
unmbl |
⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∈ dom vol ∧ ( ℝ ∖ 𝐷 ) ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ∈ dom vol ) |
270 |
262 268 269
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ∈ dom vol ) |
271 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 𝑥 ) ) |
272 |
271
|
breq2d |
⊢ ( 𝑡 = 𝑥 → ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ↔ 0 ≤ ( 𝑔 ‘ 𝑥 ) ) ) |
273 |
272 271
|
ifbieq1d |
⊢ ( 𝑡 = 𝑥 → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) |
274 |
273 89 179
|
fvmpt |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) |
275 |
274
|
eqcomd |
⊢ ( 𝑥 ∈ ℝ → if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) = ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ‘ 𝑥 ) ) |
276 |
275
|
ifeq1d |
⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) = if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) |
277 |
276
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) |
278 |
277
|
i1fres |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 ∧ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) ∈ dom ∫1 ) |
279 |
|
id |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 ) |
280 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
281 |
280
|
a1i |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 → - 1 ∈ ℝ ) |
282 |
279 281
|
i1fmulc |
⊢ ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ dom ∫1 ) |
283 |
|
cmmbl |
⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ∈ dom vol → ( ℝ ∖ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) ∈ dom vol ) |
284 |
|
ifnot |
⊢ if ( ¬ 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) , 0 ) = if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) |
285 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) ) |
286 |
285
|
baibr |
⊢ ( 𝑥 ∈ ℝ → ( ¬ 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ↔ 𝑥 ∈ ( ℝ ∖ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) ) ) |
287 |
|
tru |
⊢ ⊤ |
288 |
|
negex |
⊢ - 1 ∈ V |
289 |
288
|
fconst |
⊢ ( ℝ × { - 1 } ) : ℝ ⟶ { - 1 } |
290 |
|
ffn |
⊢ ( ( ℝ × { - 1 } ) : ℝ ⟶ { - 1 } → ( ℝ × { - 1 } ) Fn ℝ ) |
291 |
289 290
|
mp1i |
⊢ ( ⊤ → ( ℝ × { - 1 } ) Fn ℝ ) |
292 |
102
|
a1i |
⊢ ( ⊤ → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) Fn ℝ ) |
293 |
105
|
a1i |
⊢ ( ⊤ → ℝ ∈ V ) |
294 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
295 |
288
|
fvconst2 |
⊢ ( 𝑥 ∈ ℝ → ( ( ℝ × { - 1 } ) ‘ 𝑥 ) = - 1 ) |
296 |
295
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( ( ℝ × { - 1 } ) ‘ 𝑥 ) = - 1 ) |
297 |
274
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ‘ 𝑥 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) |
298 |
291 292 293 293 294 296 297
|
ofval |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ‘ 𝑥 ) = ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) |
299 |
287 298
|
mpan |
⊢ ( 𝑥 ∈ ℝ → ( ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ‘ 𝑥 ) = ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) |
300 |
299
|
eqcomd |
⊢ ( 𝑥 ∈ ℝ → ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) = ( ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ‘ 𝑥 ) ) |
301 |
286 300
|
ifbieq1d |
⊢ ( 𝑥 ∈ ℝ → if ( ¬ 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) , 0 ) = if ( 𝑥 ∈ ( ℝ ∖ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) , ( ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ‘ 𝑥 ) , 0 ) ) |
302 |
284 301
|
eqtr3id |
⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) = if ( 𝑥 ∈ ( ℝ ∖ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) , ( ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ‘ 𝑥 ) , 0 ) ) |
303 |
302
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ℝ ∖ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) , ( ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ‘ 𝑥 ) , 0 ) ) |
304 |
303
|
i1fres |
⊢ ( ( ( ( ℝ × { - 1 } ) ∘f · ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ dom ∫1 ∧ ( ℝ ∖ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ∈ dom ∫1 ) |
305 |
282 283 304
|
syl2an |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 ∧ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ∈ dom ∫1 ) |
306 |
278 305
|
i1fadd |
⊢ ( ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ dom ∫1 ∧ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) ∈ dom vol ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ) ∈ dom ∫1 ) |
307 |
90 270 306
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 0 [,) +∞ ) ) ∪ ( ℝ ∖ 𝐷 ) ) , 0 , ( - 1 · if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ) ) ∈ dom ∫1 ) |
308 |
243 307
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ) |
309 |
159
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
310 |
309 36
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ 𝐿1 ) |
311 |
16 309
|
fmptd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) : ℝ ⟶ ℝ ) |
312 |
310 311
|
jca |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) : ℝ ⟶ ℝ ) ) |
313 |
312
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) : ℝ ⟶ ℝ ) ) |
314 |
|
ftc1anclem4 |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) : ℝ ⟶ ℝ ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) − ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
315 |
314
|
3expb |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ∧ ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) : ℝ ⟶ ℝ ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) − ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
316 |
308 313 315
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) − ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) ) ) ) ∈ ℝ ) |
317 |
176 316
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ∈ ℝ ) |
318 |
139 143 144 155 317
|
itg2addnc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) = ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) ) |
319 |
105
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ℝ ∈ V ) |
320 |
101
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ V ) |
321 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
322 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
323 |
319 320 151 321 322
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) |
324 |
323
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∘f + ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) ) |
325 |
318 324
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) ) |
326 |
325
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) ) |
327 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) |
328 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑔 |
329 |
|
nfcv |
⊢ Ⅎ 𝑡 ∘r ≤ |
330 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
331 |
328 329 330
|
nfbr |
⊢ Ⅎ 𝑡 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
332 |
327 331
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) |
333 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ↔ ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ) |
334 |
92
|
ffnd |
⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 Fn ℝ ) |
335 |
|
fvex |
⊢ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ V |
336 |
|
eqid |
⊢ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
337 |
335 336
|
fnmpti |
⊢ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) Fn ℝ |
338 |
337
|
a1i |
⊢ ( 𝑔 ∈ dom ∫1 → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) Fn ℝ ) |
339 |
|
eqidd |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 𝑡 ) ) |
340 |
336
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ ℝ ∧ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ V ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ‘ 𝑡 ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
341 |
335 340
|
mpan2 |
⊢ ( 𝑡 ∈ ℝ → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ‘ 𝑡 ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
342 |
341
|
adantl |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → ( ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ‘ 𝑡 ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
343 |
334 338 106 106 294 339 342
|
ofrval |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 𝑡 ∈ ℝ ) → ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
344 |
343
|
3com23 |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
345 |
344
|
3expa |
⊢ ( ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
346 |
345
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
347 |
|
resubcl |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
348 |
15 109 347
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
349 |
348
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
350 |
|
absid |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
351 |
15 350
|
sylan |
⊢ ( ( 𝜑 ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
352 |
351
|
breq2d |
⊢ ( ( 𝜑 ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ↔ ( 𝑔 ‘ 𝑡 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
353 |
352
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
354 |
353
|
an32s |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
355 |
354
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
356 |
|
breq1 |
⊢ ( ( 𝑔 ‘ 𝑡 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) → ( ( 𝑔 ‘ 𝑡 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ↔ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
357 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) → ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ↔ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
358 |
356 357
|
ifboth |
⊢ ( ( ( 𝑔 ‘ 𝑡 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
359 |
355 358
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
360 |
|
subge0 |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ) → ( 0 ≤ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ↔ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
361 |
15 109 360
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( 0 ≤ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ↔ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
362 |
361
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( 0 ≤ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ↔ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
363 |
359 362
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → 0 ≤ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
364 |
349 363
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
365 |
|
iftrue |
⊢ ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
366 |
365
|
oveq2d |
⊢ ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
367 |
366
|
fveq2d |
⊢ ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) = ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
368 |
367
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) = ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
369 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
370 |
350
|
oveq1d |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
371 |
369 370
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
372 |
364 368 371
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) = ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
373 |
109
|
renegcld |
⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) → - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ) |
374 |
|
resubcl |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
375 |
15 373 374
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
376 |
375
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
377 |
93
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) |
378 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
379 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ) |
380 |
|
ltnle |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) < 0 ↔ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
381 |
91 380
|
mpan2 |
⊢ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) < 0 ↔ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
382 |
|
ltle |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) < 0 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) ) |
383 |
91 382
|
mpan2 |
⊢ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) < 0 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) ) |
384 |
381 383
|
sylbird |
⊢ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ → ( ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) ) |
385 |
384
|
imp |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) |
386 |
|
absnid |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
387 |
385 386
|
syldan |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
388 |
387
|
breq2d |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ↔ ( 𝑔 ‘ 𝑡 ) ≤ - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
389 |
388
|
biimpa |
⊢ ( ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
390 |
389
|
an32s |
⊢ ( ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
391 |
379 390
|
sylanl1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( 𝑔 ‘ 𝑡 ) ≤ - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
392 |
377 378 391
|
lenegcon2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - ( 𝑔 ‘ 𝑡 ) ) |
393 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → 𝜑 ) |
394 |
91
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
395 |
15 394
|
ltnled |
⊢ ( 𝜑 → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) < 0 ↔ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
396 |
15 91 382
|
sylancl |
⊢ ( 𝜑 → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) < 0 → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) ) |
397 |
395 396
|
sylbird |
⊢ ( 𝜑 → ( ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) ) |
398 |
397
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) |
399 |
393 398
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) |
400 |
|
negeq |
⊢ ( ( 𝑔 ‘ 𝑡 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) → - ( 𝑔 ‘ 𝑡 ) = - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
401 |
400
|
breq2d |
⊢ ( ( 𝑔 ‘ 𝑡 ) = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - ( 𝑔 ‘ 𝑡 ) ↔ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
402 |
|
neg0 |
⊢ - 0 = 0 |
403 |
|
negeq |
⊢ ( 0 = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) → - 0 = - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
404 |
402 403
|
eqtr3id |
⊢ ( 0 = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) → 0 = - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
405 |
404
|
breq2d |
⊢ ( 0 = if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ↔ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
406 |
401 405
|
ifboth |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - ( 𝑔 ‘ 𝑡 ) ∧ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
407 |
392 399 406
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
408 |
|
suble0 |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℝ ∧ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℝ ) → ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ≤ 0 ↔ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
409 |
15 373 408
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ≤ 0 ↔ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
410 |
409
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ≤ 0 ↔ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
411 |
407 410
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) |
412 |
376 411
|
absnidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = - ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
413 |
|
subneg |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ∧ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℂ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) + if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
414 |
413
|
negeqd |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ∧ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℂ ) → - ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = - ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) + if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
415 |
|
negdi2 |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ∧ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℂ ) → - ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) + if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
416 |
414 415
|
eqtrd |
⊢ ( ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ∈ ℂ ∧ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℂ ) → - ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
417 |
37 145 416
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → - ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
418 |
417
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → - ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
419 |
412 418
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
420 |
|
iffalse |
⊢ ( ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) |
421 |
420
|
oveq2d |
⊢ ( ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
422 |
421
|
fveq2d |
⊢ ( ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) = ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
423 |
422
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) = ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
424 |
15 386
|
sylan |
⊢ ( ( 𝜑 ∧ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ≤ 0 ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
425 |
398 424
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) = - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) |
426 |
425
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
427 |
393 426
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) = ( - ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
428 |
419 423 427
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) = ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
429 |
372 428
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) = ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
430 |
429
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) = ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
431 |
58
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ℂ ) |
432 |
|
pncan3 |
⊢ ( ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ∈ ℂ ∧ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ∈ ℂ ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
433 |
145 431 432
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
434 |
433
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) − if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
435 |
430 434
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
436 |
346 435
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ ) ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
437 |
333 436
|
sylanb |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
438 |
437
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ∧ 𝑡 ∈ ℝ ) → ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) = ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) |
439 |
332 438
|
mpteq2da |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( 𝑡 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) |
440 |
439
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) + ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
441 |
326 440
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
442 |
441
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
443 |
442
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
444 |
317
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ∈ ℝ ) |
445 |
68
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) → 𝑌 ∈ ℝ ) |
446 |
120
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) |
447 |
444 445 446
|
ltadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
448 |
447
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
449 |
|
ltsubadd |
⊢ ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ∈ ℝ ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
450 |
65 68 120 449
|
syl3an |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ∧ 𝑔 ∈ dom ∫1 ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
451 |
450
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
452 |
451
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) < ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) + 𝑌 ) ) ) |
453 |
443 448 452
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) |
454 |
453
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ↔ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) < ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) |
455 |
136 454
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) ∧ ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ) |
456 |
455
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) ∧ 𝑔 ∈ dom ∫1 ) → ( ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ) ) |
457 |
456
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ∃ 𝑔 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ) ) |
458 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑡 ) ) |
459 |
458 172
|
sylan9eq |
⊢ ( ( 𝑓 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( 𝑓 ‘ 𝑡 ) = if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) |
460 |
459
|
oveq2d |
⊢ ( ( 𝑓 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) = ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) |
461 |
460
|
fveq2d |
⊢ ( ( 𝑓 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) = ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) |
462 |
461
|
mpteq2dva |
⊢ ( 𝑓 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) → ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) |
463 |
462
|
fveq2d |
⊢ ( 𝑓 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) = ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) ) |
464 |
463
|
breq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ↔ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ) ) |
465 |
464
|
rspcev |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ∧ ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 ) → ∃ 𝑓 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ) |
466 |
465
|
ex |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ℜ ‘ if ( 𝑥 ∈ 𝐷 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑥 ) , ( 𝑔 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 → ∃ 𝑓 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ) ) |
467 |
308 466
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ dom ∫1 ) → ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 → ∃ 𝑓 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ) ) |
468 |
467
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 → ∃ 𝑓 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ) ) |
469 |
468
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ∃ 𝑔 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − if ( 0 ≤ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) , if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) , - if ( 0 ≤ ( 𝑔 ‘ 𝑡 ) , ( 𝑔 ‘ 𝑡 ) , 0 ) ) ) ) ) ) < 𝑌 → ∃ 𝑓 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ) ) |
470 |
457 469
|
syld |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ∧ ¬ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) ) ) ) − 𝑌 ) ) → ∃ 𝑓 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ) ) |
471 |
85 470
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ℝ+ ) → ∃ 𝑓 ∈ dom ∫1 ( ∫2 ‘ ( 𝑡 ∈ ℝ ↦ ( abs ‘ ( ( ℜ ‘ if ( 𝑡 ∈ 𝐷 , ( 𝐹 ‘ 𝑡 ) , 0 ) ) − ( 𝑓 ‘ 𝑡 ) ) ) ) ) < 𝑌 ) |