| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpri |
|
| 2 |
|
fveq1 |
|
| 3 |
2
|
fveq2d |
|
| 4 |
3
|
ifeq1d |
|
| 5 |
4
|
mpteq2dv |
|
| 6 |
5
|
fveq2d |
|
| 7 |
6
|
adantl |
|
| 8 |
|
ffvelcdm |
|
| 9 |
8
|
recld |
|
| 10 |
9
|
adantlr |
|
| 11 |
|
simpl |
|
| 12 |
11
|
feqmptd |
|
| 13 |
|
simpr |
|
| 14 |
12 13
|
eqeltrrd |
|
| 15 |
8
|
iblcn |
|
| 16 |
15
|
biimpa |
|
| 17 |
14 16
|
syldan |
|
| 18 |
17
|
simpld |
|
| 19 |
9
|
recnd |
|
| 20 |
|
eqidd |
|
| 21 |
|
absf |
|
| 22 |
21
|
a1i |
|
| 23 |
22
|
feqmptd |
|
| 24 |
|
fveq2 |
|
| 25 |
19 20 23 24
|
fmptco |
|
| 26 |
25
|
adantr |
|
| 27 |
9
|
fmpttd |
|
| 28 |
27
|
adantr |
|
| 29 |
|
iblmbf |
|
| 30 |
29
|
adantl |
|
| 31 |
12 30
|
eqeltrrd |
|
| 32 |
8
|
ismbfcn2 |
|
| 33 |
32
|
biimpa |
|
| 34 |
31 33
|
syldan |
|
| 35 |
34
|
simpld |
|
| 36 |
|
ftc1anclem1 |
|
| 37 |
28 35 36
|
syl2anc |
|
| 38 |
26 37
|
eqeltrrd |
|
| 39 |
10 18 38
|
iblabsnc |
|
| 40 |
19
|
abscld |
|
| 41 |
19
|
absge0d |
|
| 42 |
40 41
|
iblpos |
|
| 43 |
42
|
adantr |
|
| 44 |
39 43
|
mpbid |
|
| 45 |
44
|
simprd |
|
| 46 |
45
|
adantr |
|
| 47 |
7 46
|
eqeltrd |
|
| 48 |
|
fveq1 |
|
| 49 |
48
|
fveq2d |
|
| 50 |
49
|
ifeq1d |
|
| 51 |
50
|
mpteq2dv |
|
| 52 |
51
|
fveq2d |
|
| 53 |
52
|
adantl |
|
| 54 |
8
|
imcld |
|
| 55 |
54
|
recnd |
|
| 56 |
55
|
adantlr |
|
| 57 |
17
|
simprd |
|
| 58 |
|
eqidd |
|
| 59 |
|
fveq2 |
|
| 60 |
55 58 23 59
|
fmptco |
|
| 61 |
60
|
adantr |
|
| 62 |
54
|
fmpttd |
|
| 63 |
62
|
adantr |
|
| 64 |
34
|
simprd |
|
| 65 |
|
ftc1anclem1 |
|
| 66 |
63 64 65
|
syl2anc |
|
| 67 |
61 66
|
eqeltrrd |
|
| 68 |
56 57 67
|
iblabsnc |
|
| 69 |
55
|
abscld |
|
| 70 |
55
|
absge0d |
|
| 71 |
69 70
|
iblpos |
|
| 72 |
71
|
adantr |
|
| 73 |
68 72
|
mpbid |
|
| 74 |
73
|
simprd |
|
| 75 |
74
|
adantr |
|
| 76 |
53 75
|
eqeltrd |
|
| 77 |
47 76
|
jaodan |
|
| 78 |
1 77
|
sylan2 |
|
| 79 |
78
|
3impa |
|