Metamath Proof Explorer


Theorem ftc1anclem2

Description: Lemma for ftc1anc - restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018) (Revised by Brendan Leahy, 8-Aug-2018)

Ref Expression
Assertion ftc1anclem2 F : A F 𝐿 1 G 2 t if t A G F t 0

Proof

Step Hyp Ref Expression
1 elpri G G = G =
2 fveq1 G = G F t = F t
3 2 fveq2d G = G F t = F t
4 3 ifeq1d G = if t A G F t 0 = if t A F t 0
5 4 mpteq2dv G = t if t A G F t 0 = t if t A F t 0
6 5 fveq2d G = 2 t if t A G F t 0 = 2 t if t A F t 0
7 6 adantl F : A F 𝐿 1 G = 2 t if t A G F t 0 = 2 t if t A F t 0
8 ffvelrn F : A t A F t
9 8 recld F : A t A F t
10 9 adantlr F : A F 𝐿 1 t A F t
11 simpl F : A F 𝐿 1 F : A
12 11 feqmptd F : A F 𝐿 1 F = t A F t
13 simpr F : A F 𝐿 1 F 𝐿 1
14 12 13 eqeltrrd F : A F 𝐿 1 t A F t 𝐿 1
15 8 iblcn F : A t A F t 𝐿 1 t A F t 𝐿 1 t A F t 𝐿 1
16 15 biimpa F : A t A F t 𝐿 1 t A F t 𝐿 1 t A F t 𝐿 1
17 14 16 syldan F : A F 𝐿 1 t A F t 𝐿 1 t A F t 𝐿 1
18 17 simpld F : A F 𝐿 1 t A F t 𝐿 1
19 9 recnd F : A t A F t
20 eqidd F : A t A F t = t A F t
21 absf abs :
22 21 a1i F : A abs :
23 22 feqmptd F : A abs = x x
24 fveq2 x = F t x = F t
25 19 20 23 24 fmptco F : A abs t A F t = t A F t
26 25 adantr F : A F 𝐿 1 abs t A F t = t A F t
27 9 fmpttd F : A t A F t : A
28 27 adantr F : A F 𝐿 1 t A F t : A
29 iblmbf F 𝐿 1 F MblFn
30 29 adantl F : A F 𝐿 1 F MblFn
31 12 30 eqeltrrd F : A F 𝐿 1 t A F t MblFn
32 8 ismbfcn2 F : A t A F t MblFn t A F t MblFn t A F t MblFn
33 32 biimpa F : A t A F t MblFn t A F t MblFn t A F t MblFn
34 31 33 syldan F : A F 𝐿 1 t A F t MblFn t A F t MblFn
35 34 simpld F : A F 𝐿 1 t A F t MblFn
36 ftc1anclem1 t A F t : A t A F t MblFn abs t A F t MblFn
37 28 35 36 syl2anc F : A F 𝐿 1 abs t A F t MblFn
38 26 37 eqeltrrd F : A F 𝐿 1 t A F t MblFn
39 10 18 38 iblabsnc F : A F 𝐿 1 t A F t 𝐿 1
40 19 abscld F : A t A F t
41 19 absge0d F : A t A 0 F t
42 40 41 iblpos F : A t A F t 𝐿 1 t A F t MblFn 2 t if t A F t 0
43 42 adantr F : A F 𝐿 1 t A F t 𝐿 1 t A F t MblFn 2 t if t A F t 0
44 39 43 mpbid F : A F 𝐿 1 t A F t MblFn 2 t if t A F t 0
45 44 simprd F : A F 𝐿 1 2 t if t A F t 0
46 45 adantr F : A F 𝐿 1 G = 2 t if t A F t 0
47 7 46 eqeltrd F : A F 𝐿 1 G = 2 t if t A G F t 0
48 fveq1 G = G F t = F t
49 48 fveq2d G = G F t = F t
50 49 ifeq1d G = if t A G F t 0 = if t A F t 0
51 50 mpteq2dv G = t if t A G F t 0 = t if t A F t 0
52 51 fveq2d G = 2 t if t A G F t 0 = 2 t if t A F t 0
53 52 adantl F : A F 𝐿 1 G = 2 t if t A G F t 0 = 2 t if t A F t 0
54 8 imcld F : A t A F t
55 54 recnd F : A t A F t
56 55 adantlr F : A F 𝐿 1 t A F t
57 17 simprd F : A F 𝐿 1 t A F t 𝐿 1
58 eqidd F : A t A F t = t A F t
59 fveq2 x = F t x = F t
60 55 58 23 59 fmptco F : A abs t A F t = t A F t
61 60 adantr F : A F 𝐿 1 abs t A F t = t A F t
62 54 fmpttd F : A t A F t : A
63 62 adantr F : A F 𝐿 1 t A F t : A
64 34 simprd F : A F 𝐿 1 t A F t MblFn
65 ftc1anclem1 t A F t : A t A F t MblFn abs t A F t MblFn
66 63 64 65 syl2anc F : A F 𝐿 1 abs t A F t MblFn
67 61 66 eqeltrrd F : A F 𝐿 1 t A F t MblFn
68 56 57 67 iblabsnc F : A F 𝐿 1 t A F t 𝐿 1
69 55 abscld F : A t A F t
70 55 absge0d F : A t A 0 F t
71 69 70 iblpos F : A t A F t 𝐿 1 t A F t MblFn 2 t if t A F t 0
72 71 adantr F : A F 𝐿 1 t A F t 𝐿 1 t A F t MblFn 2 t if t A F t 0
73 68 72 mpbid F : A F 𝐿 1 t A F t MblFn 2 t if t A F t 0
74 73 simprd F : A F 𝐿 1 2 t if t A F t 0
75 74 adantr F : A F 𝐿 1 G = 2 t if t A F t 0
76 53 75 eqeltrd F : A F 𝐿 1 G = 2 t if t A G F t 0
77 47 76 jaodan F : A F 𝐿 1 G = G = 2 t if t A G F t 0
78 1 77 sylan2 F : A F 𝐿 1 G 2 t if t A G F t 0
79 78 3impa F : A F 𝐿 1 G 2 t if t A G F t 0