Metamath Proof Explorer


Theorem funfocofob

Description: If the domain of a function G is a subset of the range of a function F , then the composition ( G o. F ) is surjective iff G is surjective. (Contributed by GL and AV, 29-Sep-2024)

Ref Expression
Assertion funfocofob ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵𝐺 : 𝐴onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 fdmrn ( Fun 𝐹𝐹 : dom 𝐹 ⟶ ran 𝐹 )
2 1 biimpi ( Fun 𝐹𝐹 : dom 𝐹 ⟶ ran 𝐹 )
3 2 3ad2ant1 ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → 𝐹 : dom 𝐹 ⟶ ran 𝐹 )
4 3 adantr ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 ) → 𝐹 : dom 𝐹 ⟶ ran 𝐹 )
5 eqid ( ran 𝐹𝐴 ) = ( ran 𝐹𝐴 )
6 eqid ( 𝐹𝐴 ) = ( 𝐹𝐴 )
7 eqid ( 𝐹 ↾ ( 𝐹𝐴 ) ) = ( 𝐹 ↾ ( 𝐹𝐴 ) )
8 simp2 ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → 𝐺 : 𝐴𝐵 )
9 8 adantr ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 ) → 𝐺 : 𝐴𝐵 )
10 eqid ( 𝐺 ↾ ( ran 𝐹𝐴 ) ) = ( 𝐺 ↾ ( ran 𝐹𝐴 ) )
11 simpr ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 ) → ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 )
12 4 5 6 7 9 10 11 fcoresfo ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 ) → ( 𝐺 ↾ ( ran 𝐹𝐴 ) ) : ( ran 𝐹𝐴 ) –onto𝐵 )
13 12 ex ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 → ( 𝐺 ↾ ( ran 𝐹𝐴 ) ) : ( ran 𝐹𝐴 ) –onto𝐵 ) )
14 sseqin2 ( 𝐴 ⊆ ran 𝐹 ↔ ( ran 𝐹𝐴 ) = 𝐴 )
15 14 biimpi ( 𝐴 ⊆ ran 𝐹 → ( ran 𝐹𝐴 ) = 𝐴 )
16 15 3ad2ant3 ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( ran 𝐹𝐴 ) = 𝐴 )
17 8 fdmd ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → dom 𝐺 = 𝐴 )
18 16 17 eqtr4d ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( ran 𝐹𝐴 ) = dom 𝐺 )
19 18 reseq2d ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( 𝐺 ↾ ( ran 𝐹𝐴 ) ) = ( 𝐺 ↾ dom 𝐺 ) )
20 8 freld ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → Rel 𝐺 )
21 resdm ( Rel 𝐺 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 )
22 20 21 syl ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 )
23 19 22 eqtrd ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( 𝐺 ↾ ( ran 𝐹𝐴 ) ) = 𝐺 )
24 eqidd ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → 𝐵 = 𝐵 )
25 23 16 24 foeq123d ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺 ↾ ( ran 𝐹𝐴 ) ) : ( ran 𝐹𝐴 ) –onto𝐵𝐺 : 𝐴onto𝐵 ) )
26 13 25 sylibd ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵𝐺 : 𝐴onto𝐵 ) )
27 simpr ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴onto𝐵 ) → 𝐺 : 𝐴onto𝐵 )
28 simpl1 ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴onto𝐵 ) → Fun 𝐹 )
29 simpl3 ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴onto𝐵 ) → 𝐴 ⊆ ran 𝐹 )
30 focofo ( ( 𝐺 : 𝐴onto𝐵 ∧ Fun 𝐹𝐴 ⊆ ran 𝐹 ) → ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 )
31 27 28 29 30 syl3anc ( ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴onto𝐵 ) → ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 )
32 31 ex ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( 𝐺 : 𝐴onto𝐵 → ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵 ) )
33 26 32 impbid ( ( Fun 𝐹𝐺 : 𝐴𝐵𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺𝐹 ) : ( 𝐹𝐴 ) –onto𝐵𝐺 : 𝐴onto𝐵 ) )