| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpsubm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
fxpsubm.c |
⊢ 𝐶 = ( Base ‘ 𝑊 ) |
| 3 |
|
fxpsubm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐶 ↦ ( 𝑝 𝐴 𝑥 ) ) |
| 4 |
|
fxpsubm.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 5 |
|
fxpsubrg.1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑊 RingHom 𝑊 ) ) |
| 6 |
|
fxpsdrg.1 |
⊢ ( 𝜑 → 𝑊 ∈ DivRing ) |
| 7 |
1 2 3 4 5
|
fxpsubrg |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ∈ ( SubRing ‘ 𝑊 ) ) |
| 8 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑊 RingHom 𝑊 ) ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → 𝑊 ∈ DivRing ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑊 ∈ DivRing ) |
| 11 |
|
gaset |
⊢ ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐶 ∈ V ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 13 |
12 4
|
fxpss |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ⊆ 𝐶 ) |
| 14 |
13
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ⊆ 𝐶 ) |
| 15 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → 𝑧 ∈ 𝐶 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) |
| 17 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) |
| 20 |
|
eqid |
⊢ ( Unit ‘ 𝑊 ) = ( Unit ‘ 𝑊 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 22 |
2 20 21
|
drngunit |
⊢ ( 𝑊 ∈ DivRing → ( 𝑧 ∈ ( Unit ‘ 𝑊 ) ↔ ( 𝑧 ∈ 𝐶 ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ) ) ) |
| 23 |
22
|
biimpar |
⊢ ( ( 𝑊 ∈ DivRing ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Unit ‘ 𝑊 ) ) |
| 24 |
10 16 19 23
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ ( Unit ‘ 𝑊 ) ) |
| 25 |
|
rhmunitinv |
⊢ ( ( 𝐹 ∈ ( 𝑊 RingHom 𝑊 ) ∧ 𝑧 ∈ ( Unit ‘ 𝑊 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invr ‘ 𝑊 ) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 26 |
8 24 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invr ‘ 𝑊 ) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑥 = ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 28 |
|
eqid |
⊢ ( invr ‘ 𝑊 ) = ( invr ‘ 𝑊 ) |
| 29 |
2 21 28 9 15 18
|
drnginvrcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ∈ 𝐶 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ∈ 𝐶 ) |
| 31 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) ∈ V ) |
| 32 |
3 27 30 31
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) = ( 𝑝 𝐴 ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 𝑧 ) ) |
| 34 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑧 ) ∈ V ) |
| 35 |
3 33 16 34
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑝 𝐴 𝑧 ) ) |
| 36 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
| 39 |
38
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 41 |
1 37 39 40
|
fxpgaeq |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 𝑧 ) = 𝑧 ) |
| 42 |
35 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 43 |
42
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( ( invr ‘ 𝑊 ) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 44 |
26 32 43
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 𝐴 ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 45 |
44
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) |
| 46 |
1 36 29
|
isfxp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → ( ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ↔ ∀ 𝑝 ∈ 𝐵 ( 𝑝 𝐴 ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) = ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 47 |
45 46
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 48 |
47
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 49 |
28 21
|
issdrg2 |
⊢ ( ( 𝐶 FixPts 𝐴 ) ∈ ( SubDRing ‘ 𝑊 ) ↔ ( 𝑊 ∈ DivRing ∧ ( 𝐶 FixPts 𝐴 ) ∈ ( SubRing ‘ 𝑊 ) ∧ ∀ 𝑧 ∈ ( ( 𝐶 FixPts 𝐴 ) ∖ { ( 0g ‘ 𝑊 ) } ) ( ( invr ‘ 𝑊 ) ‘ 𝑧 ) ∈ ( 𝐶 FixPts 𝐴 ) ) ) |
| 50 |
6 7 48 49
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) ∈ ( SubDRing ‘ 𝑊 ) ) |