| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpsubm.b |
|- B = ( Base ` G ) |
| 2 |
|
fxpsubm.c |
|- C = ( Base ` W ) |
| 3 |
|
fxpsubm.f |
|- F = ( x e. C |-> ( p A x ) ) |
| 4 |
|
fxpsubm.a |
|- ( ph -> A e. ( G GrpAct C ) ) |
| 5 |
|
fxpsubrg.1 |
|- ( ( ph /\ p e. B ) -> F e. ( W RingHom W ) ) |
| 6 |
|
fxpsdrg.1 |
|- ( ph -> W e. DivRing ) |
| 7 |
1 2 3 4 5
|
fxpsubrg |
|- ( ph -> ( C FixPts A ) e. ( SubRing ` W ) ) |
| 8 |
5
|
adantlr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> F e. ( W RingHom W ) ) |
| 9 |
6
|
adantr |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> W e. DivRing ) |
| 10 |
9
|
adantr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> W e. DivRing ) |
| 11 |
|
gaset |
|- ( A e. ( G GrpAct C ) -> C e. _V ) |
| 12 |
4 11
|
syl |
|- ( ph -> C e. _V ) |
| 13 |
12 4
|
fxpss |
|- ( ph -> ( C FixPts A ) C_ C ) |
| 14 |
13
|
ssdifssd |
|- ( ph -> ( ( C FixPts A ) \ { ( 0g ` W ) } ) C_ C ) |
| 15 |
14
|
sselda |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> z e. C ) |
| 16 |
15
|
adantr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> z e. C ) |
| 17 |
|
eldifsni |
|- ( z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) -> z =/= ( 0g ` W ) ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> z =/= ( 0g ` W ) ) |
| 19 |
18
|
adantr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> z =/= ( 0g ` W ) ) |
| 20 |
|
eqid |
|- ( Unit ` W ) = ( Unit ` W ) |
| 21 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 22 |
2 20 21
|
drngunit |
|- ( W e. DivRing -> ( z e. ( Unit ` W ) <-> ( z e. C /\ z =/= ( 0g ` W ) ) ) ) |
| 23 |
22
|
biimpar |
|- ( ( W e. DivRing /\ ( z e. C /\ z =/= ( 0g ` W ) ) ) -> z e. ( Unit ` W ) ) |
| 24 |
10 16 19 23
|
syl12anc |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> z e. ( Unit ` W ) ) |
| 25 |
|
rhmunitinv |
|- ( ( F e. ( W RingHom W ) /\ z e. ( Unit ` W ) ) -> ( F ` ( ( invr ` W ) ` z ) ) = ( ( invr ` W ) ` ( F ` z ) ) ) |
| 26 |
8 24 25
|
syl2anc |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( F ` ( ( invr ` W ) ` z ) ) = ( ( invr ` W ) ` ( F ` z ) ) ) |
| 27 |
|
oveq2 |
|- ( x = ( ( invr ` W ) ` z ) -> ( p A x ) = ( p A ( ( invr ` W ) ` z ) ) ) |
| 28 |
|
eqid |
|- ( invr ` W ) = ( invr ` W ) |
| 29 |
2 21 28 9 15 18
|
drnginvrcld |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> ( ( invr ` W ) ` z ) e. C ) |
| 30 |
29
|
adantr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( ( invr ` W ) ` z ) e. C ) |
| 31 |
|
ovexd |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( p A ( ( invr ` W ) ` z ) ) e. _V ) |
| 32 |
3 27 30 31
|
fvmptd3 |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( F ` ( ( invr ` W ) ` z ) ) = ( p A ( ( invr ` W ) ` z ) ) ) |
| 33 |
|
oveq2 |
|- ( x = z -> ( p A x ) = ( p A z ) ) |
| 34 |
|
ovexd |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( p A z ) e. _V ) |
| 35 |
3 33 16 34
|
fvmptd3 |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( F ` z ) = ( p A z ) ) |
| 36 |
4
|
adantr |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> A e. ( G GrpAct C ) ) |
| 37 |
36
|
adantr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> A e. ( G GrpAct C ) ) |
| 38 |
|
simplr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) |
| 39 |
38
|
eldifad |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> z e. ( C FixPts A ) ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> p e. B ) |
| 41 |
1 37 39 40
|
fxpgaeq |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( p A z ) = z ) |
| 42 |
35 41
|
eqtrd |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( F ` z ) = z ) |
| 43 |
42
|
fveq2d |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( ( invr ` W ) ` ( F ` z ) ) = ( ( invr ` W ) ` z ) ) |
| 44 |
26 32 43
|
3eqtr3d |
|- ( ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) /\ p e. B ) -> ( p A ( ( invr ` W ) ` z ) ) = ( ( invr ` W ) ` z ) ) |
| 45 |
44
|
ralrimiva |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> A. p e. B ( p A ( ( invr ` W ) ` z ) ) = ( ( invr ` W ) ` z ) ) |
| 46 |
1 36 29
|
isfxp |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> ( ( ( invr ` W ) ` z ) e. ( C FixPts A ) <-> A. p e. B ( p A ( ( invr ` W ) ` z ) ) = ( ( invr ` W ) ` z ) ) ) |
| 47 |
45 46
|
mpbird |
|- ( ( ph /\ z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ) -> ( ( invr ` W ) ` z ) e. ( C FixPts A ) ) |
| 48 |
47
|
ralrimiva |
|- ( ph -> A. z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ( ( invr ` W ) ` z ) e. ( C FixPts A ) ) |
| 49 |
28 21
|
issdrg2 |
|- ( ( C FixPts A ) e. ( SubDRing ` W ) <-> ( W e. DivRing /\ ( C FixPts A ) e. ( SubRing ` W ) /\ A. z e. ( ( C FixPts A ) \ { ( 0g ` W ) } ) ( ( invr ` W ) ` z ) e. ( C FixPts A ) ) ) |
| 50 |
6 7 48 49
|
syl3anbrc |
|- ( ph -> ( C FixPts A ) e. ( SubDRing ` W ) ) |