| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h1de2.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
h1de2.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
1
|
elexi |
⊢ 𝐴 ∈ V |
| 4 |
3
|
elsn |
⊢ ( 𝐴 ∈ { 0ℎ } ↔ 𝐴 = 0ℎ ) |
| 5 |
|
hsn0elch |
⊢ { 0ℎ } ∈ Cℋ |
| 6 |
5
|
ococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) = { 0ℎ } |
| 7 |
6
|
eleq2i |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ↔ 𝐴 ∈ { 0ℎ } ) |
| 8 |
|
ax-hvmul0 |
⊢ ( 𝐵 ∈ ℋ → ( 0 ·ℎ 𝐵 ) = 0ℎ ) |
| 9 |
2 8
|
ax-mp |
⊢ ( 0 ·ℎ 𝐵 ) = 0ℎ |
| 10 |
9
|
eqeq2i |
⊢ ( 𝐴 = ( 0 ·ℎ 𝐵 ) ↔ 𝐴 = 0ℎ ) |
| 11 |
4 7 10
|
3bitr4ri |
⊢ ( 𝐴 = ( 0 ·ℎ 𝐵 ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ) |
| 12 |
|
sneq |
⊢ ( 𝐵 = 0ℎ → { 𝐵 } = { 0ℎ } ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝐵 = 0ℎ → ( ⊥ ‘ { 𝐵 } ) = ( ⊥ ‘ { 0ℎ } ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝐵 = 0ℎ → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝐵 = 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ) ) |
| 16 |
11 15
|
bitr4id |
⊢ ( 𝐵 = 0ℎ → ( 𝐴 = ( 0 ·ℎ 𝐵 ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 17 |
|
0cn |
⊢ 0 ∈ ℂ |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ·ℎ 𝐵 ) = ( 0 ·ℎ 𝐵 ) ) |
| 19 |
18
|
rspceeqv |
⊢ ( ( 0 ∈ ℂ ∧ 𝐴 = ( 0 ·ℎ 𝐵 ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 20 |
17 19
|
mpan |
⊢ ( 𝐴 = ( 0 ·ℎ 𝐵 ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 21 |
16 20
|
biimtrrdi |
⊢ ( 𝐵 = 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 22 |
1 2
|
h1de2bi |
⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 23 |
|
his6 |
⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) ) |
| 24 |
2 23
|
ax-mp |
⊢ ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) |
| 25 |
24
|
necon3bii |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ↔ 𝐵 ≠ 0ℎ ) |
| 26 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 27 |
2 2
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 28 |
26 27
|
divclzi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 29 |
25 28
|
sylbir |
⊢ ( 𝐵 ≠ 0ℎ → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 30 |
|
oveq1 |
⊢ ( 𝑥 = ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) → ( 𝑥 ·ℎ 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 31 |
30
|
rspceeqv |
⊢ ( ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 32 |
29 31
|
sylan |
⊢ ( ( 𝐵 ≠ 0ℎ ∧ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 33 |
32
|
ex |
⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 34 |
22 33
|
sylbid |
⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 35 |
21 34
|
pm2.61ine |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 36 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
| 37 |
|
occl |
⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) |
| 38 |
2 36 37
|
mp2b |
⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
| 39 |
38
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Cℋ |
| 40 |
39
|
chshii |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ |
| 41 |
|
h1did |
⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 42 |
2 41
|
ax-mp |
⊢ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) |
| 43 |
|
shmulcl |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( 𝑥 ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 44 |
40 42 43
|
mp3an13 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 45 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝑥 ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 46 |
44 45
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℂ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 47 |
46
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 48 |
35 47
|
impbii |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |