| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h1de2.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
h1de2.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
his6 |
⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) |
| 5 |
4
|
necon3bii |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ↔ 𝐵 ≠ 0ℎ ) |
| 6 |
1 2
|
h1de2i |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 9 |
2 2
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 10 |
9
|
recclzi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 11 |
|
ax-hvmulass |
⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 12 |
9 1 11
|
mp3an23 |
⊢ ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 15 |
14 9
|
divcan1zi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) = 1 ) |
| 16 |
15
|
oveq1d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐴 ) = ( 1 ·ℎ 𝐴 ) ) |
| 17 |
13 16
|
eqtr3d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( 1 ·ℎ 𝐴 ) ) |
| 18 |
|
ax-hvmulid |
⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ 𝐴 ) = 𝐴 ) |
| 19 |
1 18
|
ax-mp |
⊢ ( 1 ·ℎ 𝐴 ) = 𝐴 |
| 20 |
17 19
|
eqtrdi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = 𝐴 ) |
| 22 |
8 21
|
eqtr3d |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 𝐴 ) |
| 23 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 24 |
|
ax-hvmulass |
⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 25 |
23 2 24
|
mp3an23 |
⊢ ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 26 |
10 25
|
syl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
| 27 |
|
mulcom |
⊢ ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 28 |
10 23 27
|
sylancl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 29 |
23 9
|
divreczi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 30 |
28 29
|
eqtr4d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ) |
| 31 |
30
|
oveq1d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) · ( 𝐴 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 32 |
26 31
|
eqtr3d |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( 1 / ( 𝐵 ·ih 𝐵 ) ) ·ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 34 |
22 33
|
eqtr3d |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 35 |
34
|
ex |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 36 |
23 9
|
divclzi |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 37 |
2
|
elexi |
⊢ 𝐵 ∈ V |
| 38 |
37
|
snss |
⊢ ( 𝐵 ∈ ℋ ↔ { 𝐵 } ⊆ ℋ ) |
| 39 |
2 38
|
mpbi |
⊢ { 𝐵 } ⊆ ℋ |
| 40 |
|
occl |
⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) |
| 41 |
39 40
|
ax-mp |
⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
| 42 |
41
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Cℋ |
| 43 |
42
|
chshii |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ |
| 44 |
|
h1did |
⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 45 |
2 44
|
ax-mp |
⊢ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) |
| 46 |
|
shmulcl |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ ∧ ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 47 |
43 45 46
|
mp3an13 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 48 |
36 47
|
syl |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 49 |
|
eleq1 |
⊢ ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 50 |
48 49
|
syl5ibrcom |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 51 |
35 50
|
impbid |
⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 52 |
5 51
|
sylbir |
⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |