| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss1 |
⊢ ( 𝐹 ∩ 𝐺 ) ⊆ 𝐹 |
| 2 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 4 |
1 3
|
sstrid |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ∩ 𝐺 ) ⊆ 𝒫 𝑋 ) |
| 5 |
|
0nelfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ 𝐹 ) |
| 7 |
|
elinel1 |
⊢ ( ∅ ∈ ( 𝐹 ∩ 𝐺 ) → ∅ ∈ 𝐹 ) |
| 8 |
6 7
|
nsyl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ¬ ∅ ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 9 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ∈ 𝐹 ) |
| 11 |
|
filtop |
⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐺 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ∈ 𝐺 ) |
| 13 |
10 12
|
elind |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 14 |
4 8 13
|
3jca |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐹 ∩ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑋 ∈ ( 𝐹 ∩ 𝐺 ) ) ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 16 |
|
simpr2 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 17 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑦 ∈ 𝐹 ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐹 ) |
| 19 |
|
simpr1 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝒫 𝑋 ) |
| 20 |
19
|
elpwid |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑋 ) |
| 21 |
|
simpr3 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) |
| 22 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) |
| 23 |
15 18 20 21 22
|
syl13anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) |
| 24 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
| 25 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑦 ∈ 𝐺 ) |
| 26 |
16 25
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐺 ) |
| 27 |
|
filss |
⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐺 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐺 ) |
| 28 |
24 26 20 21 27
|
syl13anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐺 ) |
| 29 |
23 28
|
elind |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 30 |
29
|
3exp2 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) ) ) |
| 31 |
30
|
imp |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) ) |
| 32 |
31
|
rexlimdv |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∃ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ) |
| 34 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 35 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑥 ∈ 𝐹 ) |
| 36 |
35 17
|
anim12i |
⊢ ( ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) → ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) |
| 37 |
|
filin |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 38 |
37
|
3expb |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 39 |
34 36 38
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 40 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
| 41 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) → 𝑥 ∈ 𝐺 ) |
| 42 |
41 25
|
anim12i |
⊢ ( ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) → ( 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) ) |
| 43 |
|
filin |
⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐺 ) |
| 44 |
43
|
3expb |
⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐺 ) |
| 45 |
40 42 44
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐺 ) |
| 46 |
39 45
|
elind |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 47 |
46
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ∀ 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 48 |
|
isfil2 |
⊢ ( ( 𝐹 ∩ 𝐺 ) ∈ ( Fil ‘ 𝑋 ) ↔ ( ( ( 𝐹 ∩ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ ( 𝐹 ∩ 𝐺 ) ∧ 𝑋 ∈ ( 𝐹 ∩ 𝐺 ) ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∩ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∩ 𝐺 ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∩ 𝐺 ) ) ) |
| 49 |
14 33 47 48
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ∩ 𝐺 ) ∈ ( Fil ‘ 𝑋 ) ) |