Step |
Hyp |
Ref |
Expression |
1 |
|
iprodmul.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iprodmul.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iprodmul.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
4 |
|
iprodmul.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
iprodmul.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
6 |
|
iprodmul.6 |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑚 ( · , 𝐺 ) ⇝ 𝑧 ) ) |
7 |
|
iprodmul.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
8 |
|
iprodmul.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
9 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
10 |
7 8
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
11 |
|
fveq2 |
⊢ ( 𝑎 = 𝑘 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑘 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑎 = 𝑘 → ( 𝐺 ‘ 𝑎 ) = ( 𝐺 ‘ 𝑘 ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑎 = 𝑘 → ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
14 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) = ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) |
15 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ∈ V |
16 |
13 14 15
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
18 |
1 3 9 6 10 17
|
ntrivcvgmul |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝑍 ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ) ⇝ 𝑤 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑚 = 𝑎 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑎 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑚 = 𝑎 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑎 ) ) |
21 |
19 20
|
oveq12d |
⊢ ( 𝑚 = 𝑎 → ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) |
22 |
21
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) |
23 |
|
seqeq3 |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) → seq 𝑝 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) = seq 𝑝 ( · , ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ) ) |
24 |
22 23
|
ax-mp |
⊢ seq 𝑝 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) = seq 𝑝 ( · , ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ) |
25 |
24
|
breq1i |
⊢ ( seq 𝑝 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ 𝑤 ↔ seq 𝑝 ( · , ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ) ⇝ 𝑤 ) |
26 |
25
|
anbi2i |
⊢ ( ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ 𝑤 ) ↔ ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ) ⇝ 𝑤 ) ) |
27 |
26
|
exbii |
⊢ ( ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ 𝑤 ) ↔ ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ) ⇝ 𝑤 ) ) |
28 |
27
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝑍 ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ 𝑤 ) ↔ ∃ 𝑝 ∈ 𝑍 ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑎 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑎 ) · ( 𝐺 ‘ 𝑎 ) ) ) ) ⇝ 𝑤 ) ) |
29 |
18 28
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝑍 ∃ 𝑤 ( 𝑤 ≠ 0 ∧ seq 𝑝 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ 𝑤 ) ) |
30 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ) |
33 |
31 32
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
35 |
9 10
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
36 |
30 33 34 35
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
37 |
4 7
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 · 𝐵 ) ) |
38 |
36 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐴 · 𝐵 ) ) |
39 |
5 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
40 |
1 2 3 4 5
|
iprodclim2 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ∏ 𝑘 ∈ 𝑍 𝐴 ) |
41 |
|
seqex |
⊢ seq 𝑀 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ V |
42 |
41
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ V ) |
43 |
1 2 6 7 8
|
iprodclim2 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐺 ) ⇝ ∏ 𝑘 ∈ 𝑍 𝐵 ) |
44 |
1 2 9
|
prodf |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |
45 |
44
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
46 |
1 2 10
|
prodf |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐺 ) : 𝑍 ⟶ ℂ ) |
47 |
46
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
49 |
48 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
50 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
51 |
50 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
52 |
51 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
53 |
52
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
54 |
51 10
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
55 |
54
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
56 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
57 |
51 56
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
58 |
49 53 55 57
|
prodfmul |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) · ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑗 ) ) ) |
59 |
1 2 40 42 43 45 47 58
|
climmul |
⊢ ( 𝜑 → seq 𝑀 ( · , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) · ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ ( ∏ 𝑘 ∈ 𝑍 𝐴 · ∏ 𝑘 ∈ 𝑍 𝐵 ) ) |
60 |
1 2 29 38 39 59
|
iprodclim |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 ( 𝐴 · 𝐵 ) = ( ∏ 𝑘 ∈ 𝑍 𝐴 · ∏ 𝑘 ∈ 𝑍 𝐵 ) ) |