| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kgencn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( ( 𝑘Gen ‘ 𝐽 )  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) ) ) | 
						
							| 2 |  | rncmp | ⊢ ( ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) )  →  ( 𝐽  ↾t  ran  𝑔 )  ∈  Comp ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ( 𝐽  ↾t  ran  𝑔 )  ∈  Comp ) | 
						
							| 4 |  | simprr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) | 
						
							| 5 |  | eqid | ⊢ ∪  𝑧  =  ∪  𝑧 | 
						
							| 6 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 7 | 5 6 | cnf | ⊢ ( 𝑔  ∈  ( 𝑧  Cn  𝐽 )  →  𝑔 : ∪  𝑧 ⟶ ∪  𝐽 ) | 
						
							| 8 |  | frn | ⊢ ( 𝑔 : ∪  𝑧 ⟶ ∪  𝐽  →  ran  𝑔  ⊆  ∪  𝐽 ) | 
						
							| 9 | 4 7 8 | 3syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ran  𝑔  ⊆  ∪  𝐽 ) | 
						
							| 10 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 11 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 12 | 9 11 | sseqtrrd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ran  𝑔  ⊆  𝑋 ) | 
						
							| 13 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 14 | 13 | rnex | ⊢ ran  𝑔  ∈  V | 
						
							| 15 | 14 | elpw | ⊢ ( ran  𝑔  ∈  𝒫  𝑋  ↔  ran  𝑔  ⊆  𝑋 ) | 
						
							| 16 | 12 15 | sylibr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ran  𝑔  ∈  𝒫  𝑋 ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑘  =  ran  𝑔  →  ( 𝐽  ↾t  𝑘 )  =  ( 𝐽  ↾t  ran  𝑔 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑘  =  ran  𝑔  →  ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  ↔  ( 𝐽  ↾t  ran  𝑔 )  ∈  Comp ) ) | 
						
							| 19 |  | reseq2 | ⊢ ( 𝑘  =  ran  𝑔  →  ( 𝐹  ↾  𝑘 )  =  ( 𝐹  ↾  ran  𝑔 ) ) | 
						
							| 20 | 17 | oveq1d | ⊢ ( 𝑘  =  ran  𝑔  →  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 )  =  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 ) ) | 
						
							| 21 | 19 20 | eleq12d | ⊢ ( 𝑘  =  ran  𝑔  →  ( ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 )  ↔  ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 ) ) ) | 
						
							| 22 | 18 21 | imbi12d | ⊢ ( 𝑘  =  ran  𝑔  →  ( ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) )  ↔  ( ( 𝐽  ↾t  ran  𝑔 )  ∈  Comp  →  ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 ) ) ) ) | 
						
							| 23 | 22 | rspcv | ⊢ ( ran  𝑔  ∈  𝒫  𝑋  →  ( ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) )  →  ( ( 𝐽  ↾t  ran  𝑔 )  ∈  Comp  →  ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 ) ) ) ) | 
						
							| 24 | 16 23 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ( ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) )  →  ( ( 𝐽  ↾t  ran  𝑔 )  ∈  Comp  →  ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 ) ) ) ) | 
						
							| 25 | 3 24 | mpid | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ( ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) )  →  ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 ) ) ) | 
						
							| 26 |  | simplll | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 27 |  | ssidd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ran  𝑔  ⊆  ran  𝑔 ) | 
						
							| 28 |  | cnrest2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ran  𝑔  ⊆  ran  𝑔  ∧  ran  𝑔  ⊆  𝑋 )  →  ( 𝑔  ∈  ( 𝑧  Cn  𝐽 )  ↔  𝑔  ∈  ( 𝑧  Cn  ( 𝐽  ↾t  ran  𝑔 ) ) ) ) | 
						
							| 29 | 26 27 12 28 | syl3anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ( 𝑔  ∈  ( 𝑧  Cn  𝐽 )  ↔  𝑔  ∈  ( 𝑧  Cn  ( 𝐽  ↾t  ran  𝑔 ) ) ) ) | 
						
							| 30 | 4 29 | mpbid | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  𝑔  ∈  ( 𝑧  Cn  ( 𝐽  ↾t  ran  𝑔 ) ) ) | 
						
							| 31 |  | cnco | ⊢ ( ( 𝑔  ∈  ( 𝑧  Cn  ( 𝐽  ↾t  ran  𝑔 ) )  ∧  ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 ) )  →  ( ( 𝐹  ↾  ran  𝑔 )  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑔  ∈  ( 𝑧  Cn  ( 𝐽  ↾t  ran  𝑔 ) )  →  ( ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 )  →  ( ( 𝐹  ↾  ran  𝑔 )  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) | 
						
							| 33 | 30 32 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ( ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 )  →  ( ( 𝐹  ↾  ran  𝑔 )  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) | 
						
							| 34 |  | ssid | ⊢ ran  𝑔  ⊆  ran  𝑔 | 
						
							| 35 |  | cores | ⊢ ( ran  𝑔  ⊆  ran  𝑔  →  ( ( 𝐹  ↾  ran  𝑔 )  ∘  𝑔 )  =  ( 𝐹  ∘  𝑔 ) ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ ( ( 𝐹  ↾  ran  𝑔 )  ∘  𝑔 )  =  ( 𝐹  ∘  𝑔 ) | 
						
							| 37 | 36 | eleq1i | ⊢ ( ( ( 𝐹  ↾  ran  𝑔 )  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 )  ↔  ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) | 
						
							| 38 | 33 37 | imbitrdi | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ( ( 𝐹  ↾  ran  𝑔 )  ∈  ( ( 𝐽  ↾t  ran  𝑔 )  Cn  𝐾 )  →  ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) | 
						
							| 39 | 25 38 | syld | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑧  ∈  Comp  ∧  𝑔  ∈  ( 𝑧  Cn  𝐽 ) ) )  →  ( ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) )  →  ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) | 
						
							| 40 | 39 | ralrimdvva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) )  →  ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐽  ↾t  𝑘 )  →  ( 𝑧  Cn  𝐽 )  =  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐽  ↾t  𝑘 )  →  ( 𝑧  Cn  𝐾 )  =  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) | 
						
							| 43 | 42 | eleq2d | ⊢ ( 𝑧  =  ( 𝐽  ↾t  𝑘 )  →  ( ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 )  ↔  ( 𝐹  ∘  𝑔 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) | 
						
							| 44 | 41 43 | raleqbidv | ⊢ ( 𝑧  =  ( 𝐽  ↾t  𝑘 )  →  ( ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 )  ↔  ∀ 𝑔  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) | 
						
							| 45 | 44 | rspcv | ⊢ ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 )  →  ∀ 𝑔  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) | 
						
							| 46 |  | elpwi | ⊢ ( 𝑘  ∈  𝒫  𝑋  →  𝑘  ⊆  𝑋 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  𝑘  ⊆  𝑋 ) | 
						
							| 48 | 47 | resabs1d | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  ( (  I   ↾  𝑋 )  ↾  𝑘 )  =  (  I   ↾  𝑘 ) ) | 
						
							| 49 |  | idcn | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  (  I   ↾  𝑋 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 50 | 49 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  (  I   ↾  𝑋 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 51 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 52 | 47 51 | sseqtrd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  𝑘  ⊆  ∪  𝐽 ) | 
						
							| 53 | 6 | cnrest | ⊢ ( ( (  I   ↾  𝑋 )  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑘  ⊆  ∪  𝐽 )  →  ( (  I   ↾  𝑋 )  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ) | 
						
							| 54 | 50 52 53 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  ( (  I   ↾  𝑋 )  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ) | 
						
							| 55 | 48 54 | eqeltrrd | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  (  I   ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ) | 
						
							| 56 |  | coeq2 | ⊢ ( 𝑔  =  (  I   ↾  𝑘 )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  (  I   ↾  𝑘 ) ) ) | 
						
							| 57 | 56 | eleq1d | ⊢ ( 𝑔  =  (  I   ↾  𝑘 )  →  ( ( 𝐹  ∘  𝑔 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 )  ↔  ( 𝐹  ∘  (  I   ↾  𝑘 ) )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) | 
						
							| 58 | 57 | rspcv | ⊢ ( (  I   ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 )  →  ( ∀ 𝑔  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 )  →  ( 𝐹  ∘  (  I   ↾  𝑘 ) )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) | 
						
							| 59 | 55 58 | syl | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  ( ∀ 𝑔  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 )  →  ( 𝐹  ∘  (  I   ↾  𝑘 ) )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) | 
						
							| 60 |  | coires1 | ⊢ ( 𝐹  ∘  (  I   ↾  𝑘 ) )  =  ( 𝐹  ↾  𝑘 ) | 
						
							| 61 | 60 | eleq1i | ⊢ ( ( 𝐹  ∘  (  I   ↾  𝑘 ) )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 )  ↔  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) | 
						
							| 62 | 59 61 | imbitrdi | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  ( ∀ 𝑔  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 )  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) | 
						
							| 63 | 45 62 | syl9r | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 )  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) ) | 
						
							| 64 | 63 | com23 | ⊢ ( ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑘  ∈  𝒫  𝑋 )  →  ( ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 )  →  ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) ) | 
						
							| 65 | 64 | ralrimdva | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 )  →  ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) ) ) | 
						
							| 66 | 40 65 | impbid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) )  ↔  ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) | 
						
							| 67 | 66 | pm5.32da | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑘  ∈  𝒫  𝑋 ( ( 𝐽  ↾t  𝑘 )  ∈  Comp  →  ( 𝐹  ↾  𝑘 )  ∈  ( ( 𝐽  ↾t  𝑘 )  Cn  𝐾 ) ) )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) ) | 
						
							| 68 | 1 67 | bitrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( ( 𝑘Gen ‘ 𝐽 )  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑧  ∈  Comp ∀ 𝑔  ∈  ( 𝑧  Cn  𝐽 ) ( 𝐹  ∘  𝑔 )  ∈  ( 𝑧  Cn  𝐾 ) ) ) ) |