| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmnn.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | lmnn.3 | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 3 |  | lmnn.4 | ⊢ ( 𝜑  →  𝑃  ∈  𝑋 ) | 
						
							| 4 |  | lmnn.5 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 ) | 
						
							| 5 |  | lmnn.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  ( 1  /  𝑘 ) ) | 
						
							| 6 |  | rpreccl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 8 | 7 | rpred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 9 | 7 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  0  ≤  ( 1  /  𝑥 ) ) | 
						
							| 10 |  | flge0nn0 | ⊢ ( ( ( 1  /  𝑥 )  ∈  ℝ  ∧  0  ≤  ( 1  /  𝑥 ) )  →  ( ⌊ ‘ ( 1  /  𝑥 ) )  ∈  ℕ0 ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ⌊ ‘ ( 1  /  𝑥 ) )  ∈  ℕ0 ) | 
						
							| 12 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  ∈  ℕ0  →  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ∈  ℕ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ∈  ℕ ) | 
						
							| 14 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 15 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝐹 : ℕ ⟶ 𝑋 ) | 
						
							| 16 |  | eluznn | ⊢ ( ( ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 17 | 13 16 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 18 | 15 17 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 19 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 20 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  𝑃  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  ∈  ℝ* ) | 
						
							| 21 | 14 18 19 20 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  ∈  ℝ* ) | 
						
							| 22 | 17 | nnrecred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 23 | 22 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( 1  /  𝑘 )  ∈  ℝ* ) | 
						
							| 24 |  | rpxr | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ* ) | 
						
							| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 26 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  ( 1  /  𝑘 ) ) | 
						
							| 27 | 17 26 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  ( 1  /  𝑘 ) ) | 
						
							| 28 | 8 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 29 | 13 | nnred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ∈  ℝ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ∈  ℝ ) | 
						
							| 31 | 17 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 32 |  | flltp1 | ⊢ ( ( 1  /  𝑥 )  ∈  ℝ  →  ( 1  /  𝑥 )  <  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) | 
						
							| 33 | 28 32 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( 1  /  𝑥 )  <  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) | 
						
							| 34 |  | eluzle | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) )  →  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ≤  𝑘 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ≤  𝑘 ) | 
						
							| 36 | 28 30 31 33 35 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( 1  /  𝑥 )  <  𝑘 ) | 
						
							| 37 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 38 |  | rpregt0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 39 |  | nnrp | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ+ ) | 
						
							| 40 | 39 | rpregt0d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  ∈  ℝ  ∧  0  <  𝑘 ) ) | 
						
							| 41 |  | ltrec1 | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 )  ∧  ( 𝑘  ∈  ℝ  ∧  0  <  𝑘 ) )  →  ( ( 1  /  𝑥 )  <  𝑘  ↔  ( 1  /  𝑘 )  <  𝑥 ) ) | 
						
							| 42 | 38 40 41 | syl2an | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  𝑥 )  <  𝑘  ↔  ( 1  /  𝑘 )  <  𝑥 ) ) | 
						
							| 43 | 37 17 42 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( ( 1  /  𝑥 )  <  𝑘  ↔  ( 1  /  𝑘 )  <  𝑥 ) ) | 
						
							| 44 | 36 43 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( 1  /  𝑘 )  <  𝑥 ) | 
						
							| 45 | 21 23 25 27 44 | xrlttrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) | 
						
							| 47 |  | fveq2 | ⊢ ( 𝑗  =  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) ) | 
						
							| 48 | 47 | raleqdv | ⊢ ( 𝑗  =  ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) | 
						
							| 49 | 48 | rspcev | ⊢ ( ( ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 )  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  𝑥 ) )  +  1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) | 
						
							| 50 | 13 46 49 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) | 
						
							| 51 | 50 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) | 
						
							| 52 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 53 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 54 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 55 | 1 2 52 53 54 4 | lmmbrf | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) | 
						
							| 56 | 3 51 55 | mpbir2and | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |