| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmnn.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | lmnn.3 |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 3 |  | lmnn.4 |  |-  ( ph -> P e. X ) | 
						
							| 4 |  | lmnn.5 |  |-  ( ph -> F : NN --> X ) | 
						
							| 5 |  | lmnn.6 |  |-  ( ( ph /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) | 
						
							| 6 |  | rpreccl |  |-  ( x e. RR+ -> ( 1 / x ) e. RR+ ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) | 
						
							| 8 | 7 | rpred |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR ) | 
						
							| 9 | 7 | rpge0d |  |-  ( ( ph /\ x e. RR+ ) -> 0 <_ ( 1 / x ) ) | 
						
							| 10 |  | flge0nn0 |  |-  ( ( ( 1 / x ) e. RR /\ 0 <_ ( 1 / x ) ) -> ( |_ ` ( 1 / x ) ) e. NN0 ) | 
						
							| 11 | 8 9 10 | syl2anc |  |-  ( ( ph /\ x e. RR+ ) -> ( |_ ` ( 1 / x ) ) e. NN0 ) | 
						
							| 12 |  | nn0p1nn |  |-  ( ( |_ ` ( 1 / x ) ) e. NN0 -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN ) | 
						
							| 14 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> D e. ( *Met ` X ) ) | 
						
							| 15 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> F : NN --> X ) | 
						
							| 16 |  | eluznn |  |-  ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN ) | 
						
							| 17 | 13 16 | sylan |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. NN ) | 
						
							| 18 | 15 17 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( F ` k ) e. X ) | 
						
							| 19 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> P e. X ) | 
						
							| 20 |  | xmetcl |  |-  ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X /\ P e. X ) -> ( ( F ` k ) D P ) e. RR* ) | 
						
							| 21 | 14 18 19 20 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) e. RR* ) | 
						
							| 22 | 17 | nnrecred |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR ) | 
						
							| 23 | 22 | rexrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) e. RR* ) | 
						
							| 24 |  | rpxr |  |-  ( x e. RR+ -> x e. RR* ) | 
						
							| 25 | 24 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR* ) | 
						
							| 26 | 5 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. NN ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) | 
						
							| 27 | 17 26 | syldan |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < ( 1 / k ) ) | 
						
							| 28 | 8 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) e. RR ) | 
						
							| 29 | 13 | nnred |  |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) e. RR ) | 
						
							| 31 | 17 | nnred |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> k e. RR ) | 
						
							| 32 |  | flltp1 |  |-  ( ( 1 / x ) e. RR -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) ) | 
						
							| 33 | 28 32 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < ( ( |_ ` ( 1 / x ) ) + 1 ) ) | 
						
							| 34 |  | eluzle |  |-  ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / x ) ) + 1 ) <_ k ) | 
						
							| 36 | 28 30 31 33 35 | ltletrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / x ) < k ) | 
						
							| 37 |  | simplr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> x e. RR+ ) | 
						
							| 38 |  | rpregt0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) | 
						
							| 39 |  | nnrp |  |-  ( k e. NN -> k e. RR+ ) | 
						
							| 40 | 39 | rpregt0d |  |-  ( k e. NN -> ( k e. RR /\ 0 < k ) ) | 
						
							| 41 |  | ltrec1 |  |-  ( ( ( x e. RR /\ 0 < x ) /\ ( k e. RR /\ 0 < k ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) | 
						
							| 42 | 38 40 41 | syl2an |  |-  ( ( x e. RR+ /\ k e. NN ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) | 
						
							| 43 | 37 17 42 | syl2anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( 1 / x ) < k <-> ( 1 / k ) < x ) ) | 
						
							| 44 | 36 43 | mpbid |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( 1 / k ) < x ) | 
						
							| 45 | 21 23 25 27 44 | xrlttrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) -> ( ( F ` k ) D P ) < x ) | 
						
							| 46 | 45 | ralrimiva |  |-  ( ( ph /\ x e. RR+ ) -> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) | 
						
							| 47 |  | fveq2 |  |-  ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ) | 
						
							| 48 | 47 | raleqdv |  |-  ( j = ( ( |_ ` ( 1 / x ) ) + 1 ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x <-> A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) ) | 
						
							| 49 | 48 | rspcev |  |-  ( ( ( ( |_ ` ( 1 / x ) ) + 1 ) e. NN /\ A. k e. ( ZZ>= ` ( ( |_ ` ( 1 / x ) ) + 1 ) ) ( ( F ` k ) D P ) < x ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) | 
						
							| 50 | 13 46 49 | syl2anc |  |-  ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) | 
						
							| 51 | 50 | ralrimiva |  |-  ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) | 
						
							| 52 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 53 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 54 |  | eqidd |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 55 | 1 2 52 53 54 4 | lmmbrf |  |-  ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) D P ) < x ) ) ) | 
						
							| 56 | 3 51 55 | mpbir2and |  |-  ( ph -> F ( ~~>t ` J ) P ) |