| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnocoi.l |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
| 2 |
|
lnocoi.m |
⊢ 𝑀 = ( 𝑊 LnOp 𝑋 ) |
| 3 |
|
lnocoi.n |
⊢ 𝑁 = ( 𝑈 LnOp 𝑋 ) |
| 4 |
|
lnocoi.u |
⊢ 𝑈 ∈ NrmCVec |
| 5 |
|
lnocoi.w |
⊢ 𝑊 ∈ NrmCVec |
| 6 |
|
lnocoi.x |
⊢ 𝑋 ∈ NrmCVec |
| 7 |
|
lnocoi.s |
⊢ 𝑆 ∈ 𝐿 |
| 8 |
|
lnocoi.t |
⊢ 𝑇 ∈ 𝑀 |
| 9 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( BaseSet ‘ 𝑋 ) = ( BaseSet ‘ 𝑋 ) |
| 11 |
9 10 2
|
lnof |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀 ) → 𝑇 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑋 ) ) |
| 12 |
5 6 8 11
|
mp3an |
⊢ 𝑇 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑋 ) |
| 13 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
| 14 |
13 9 1
|
lnof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿 ) → 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 15 |
4 5 7 14
|
mp3an |
⊢ 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) |
| 16 |
|
fco |
⊢ ( ( 𝑇 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑋 ) ∧ 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) ) |
| 17 |
12 15 16
|
mp2an |
⊢ ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) |
| 18 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 19 |
13 18
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 20 |
4 19
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 21 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 22 |
13 21
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 23 |
4 22
|
mp3an1 |
⊢ ( ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 24 |
20 23
|
stoic3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 25 |
|
fvco3 |
⊢ ( ( 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) ) |
| 26 |
15 24 25
|
sylancr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) ) |
| 27 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
| 28 |
15
|
ffvelcdmi |
⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑈 ) → ( 𝑆 ‘ 𝑦 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 29 |
15
|
ffvelcdmi |
⊢ ( 𝑧 ∈ ( BaseSet ‘ 𝑈 ) → ( 𝑆 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 30 |
5 6 8
|
3pm3.2i |
⊢ ( 𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀 ) |
| 31 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
| 32 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑋 ) = ( +𝑣 ‘ 𝑋 ) |
| 33 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
| 34 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑋 ) = ( ·𝑠OLD ‘ 𝑋 ) |
| 35 |
9 10 31 32 33 34 2
|
lnolin |
⊢ ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀 ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑆 ‘ 𝑦 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑆 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) ) → ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 36 |
30 35
|
mpan |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑆 ‘ 𝑦 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑆 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 37 |
27 28 29 36
|
syl3an |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 38 |
4 5 7
|
3pm3.2i |
⊢ ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿 ) |
| 39 |
13 9 21 31 18 33 1
|
lnolin |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) |
| 40 |
38 39
|
mpan |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) |
| 41 |
40
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) = ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 42 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) |
| 43 |
|
fvco3 |
⊢ ( ( 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 44 |
15 42 43
|
sylancr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 45 |
44
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 46 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) |
| 47 |
|
fvco3 |
⊢ ( ( 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) |
| 48 |
15 46 47
|
sylancr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) |
| 49 |
45 48
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 50 |
37 41 49
|
3eqtr4rd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) = ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) ) |
| 51 |
26 50
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) ) |
| 52 |
51
|
rgen3 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) |
| 53 |
13 10 21 32 18 34 3
|
islno |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ) → ( ( 𝑇 ∘ 𝑆 ) ∈ 𝑁 ↔ ( ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) ) ) ) |
| 54 |
4 6 53
|
mp2an |
⊢ ( ( 𝑇 ∘ 𝑆 ) ∈ 𝑁 ↔ ( ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) ) ) |
| 55 |
17 52 54
|
mpbir2an |
⊢ ( 𝑇 ∘ 𝑆 ) ∈ 𝑁 |