| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvrf.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
mvrf.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 3 |
|
mvrf.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
mvrf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 5 |
|
mvrf.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
mvrf1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
mvrf1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 8 |
|
mvrf1.n |
⊢ ( 𝜑 → 1 ≠ 0 ) |
| 9 |
1 2 3 4 5
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| 10 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → 1 ≠ 0 ) |
| 11 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) |
| 12 |
11
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉 ‘ 𝑥 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = ( ( 𝑉 ‘ 𝑦 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) ) |
| 13 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 14 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝐼 ∈ 𝑊 ) |
| 15 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑅 ∈ Ring ) |
| 16 |
|
simp2ll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝐼 ) |
| 17 |
2 13 6 7 14 15 16
|
mvrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉 ‘ 𝑥 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = 1 ) |
| 18 |
|
simp2lr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐼 ) |
| 19 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 20 |
13
|
snifpsrbag |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 21 |
14 19 20
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 22 |
2 13 6 7 14 15 18 21
|
mvrval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉 ‘ 𝑦 ) ‘ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) ) |
| 23 |
12 17 22
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 1 = if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) ) |
| 24 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ¬ 𝑥 = 𝑦 ) |
| 25 |
|
mpteqb |
⊢ ( ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ↔ ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ) ) |
| 26 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 27 |
19 26
|
ifcli |
⊢ if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 |
| 28 |
27
|
a1i |
⊢ ( 𝑧 ∈ 𝐼 → if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 ) |
| 29 |
25 28
|
mprg |
⊢ ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ↔ ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ) |
| 30 |
|
iftrue |
⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , 1 , 0 ) = 1 ) |
| 31 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 32 |
31
|
ifbid |
⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑦 , 1 , 0 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) |
| 33 |
30 32
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ↔ 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 34 |
33
|
rspcv |
⊢ ( 𝑥 ∈ 𝐼 → ( ∀ 𝑧 ∈ 𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 35 |
29 34
|
biimtrid |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 36 |
16 35
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
| 37 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 38 |
|
eqeq1 |
⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ( 1 = 0 ↔ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) ) |
| 39 |
38
|
necon3abid |
⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ( 1 ≠ 0 ↔ ¬ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) ) |
| 40 |
37 39
|
mpbii |
⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ¬ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) |
| 41 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝑦 → if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) |
| 42 |
40 41
|
nsyl2 |
⊢ ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → 𝑥 = 𝑦 ) |
| 43 |
36 42
|
syl6 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 𝑥 = 𝑦 ) ) |
| 44 |
24 43
|
mtod |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ¬ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ) |
| 45 |
|
iffalse |
⊢ ( ¬ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) = 0 ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → if ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) = 0 ) |
| 47 |
23 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 1 = 0 ) |
| 48 |
47
|
3expia |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → ( ¬ 𝑥 = 𝑦 → 1 = 0 ) ) |
| 49 |
48
|
necon1ad |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → ( 1 ≠ 0 → 𝑥 = 𝑦 ) ) |
| 50 |
10 49
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ∧ ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 51 |
50
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 52 |
51
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 53 |
|
dff13 |
⊢ ( 𝑉 : 𝐼 –1-1→ 𝐵 ↔ ( 𝑉 : 𝐼 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 54 |
9 52 53
|
sylanbrc |
⊢ ( 𝜑 → 𝑉 : 𝐼 –1-1→ 𝐵 ) |