Metamath Proof Explorer


Theorem mvrf1

Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses mvrf.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
mvrf.v 𝑉 = ( 𝐼 mVar 𝑅 )
mvrf.b 𝐵 = ( Base ‘ 𝑆 )
mvrf.i ( 𝜑𝐼𝑊 )
mvrf.r ( 𝜑𝑅 ∈ Ring )
mvrf1.z 0 = ( 0g𝑅 )
mvrf1.o 1 = ( 1r𝑅 )
mvrf1.n ( 𝜑10 )
Assertion mvrf1 ( 𝜑𝑉 : 𝐼1-1𝐵 )

Proof

Step Hyp Ref Expression
1 mvrf.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 mvrf.v 𝑉 = ( 𝐼 mVar 𝑅 )
3 mvrf.b 𝐵 = ( Base ‘ 𝑆 )
4 mvrf.i ( 𝜑𝐼𝑊 )
5 mvrf.r ( 𝜑𝑅 ∈ Ring )
6 mvrf1.z 0 = ( 0g𝑅 )
7 mvrf1.o 1 = ( 1r𝑅 )
8 mvrf1.n ( 𝜑10 )
9 1 2 3 4 5 mvrf ( 𝜑𝑉 : 𝐼𝐵 )
10 8 adantr ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ) → 10 )
11 simp2r ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑉𝑥 ) = ( 𝑉𝑦 ) )
12 11 fveq1d ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉𝑥 ) ‘ ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = ( ( 𝑉𝑦 ) ‘ ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) )
13 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
14 4 3ad2ant1 ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝐼𝑊 )
15 5 3ad2ant1 ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑅 ∈ Ring )
16 simp2ll ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑥𝐼 )
17 2 13 6 7 14 15 16 mvrid ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉𝑥 ) ‘ ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = 1 )
18 simp2lr ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 𝑦𝐼 )
19 1nn0 1 ∈ ℕ0
20 13 snifpsrbag ( ( 𝐼𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
21 14 19 20 sylancl ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
22 2 13 6 7 14 15 18 21 mvrval2 ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑉𝑦 ) ‘ ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) = if ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) )
23 12 17 22 3eqtr3d ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 1 = if ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) )
24 simp3 ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ¬ 𝑥 = 𝑦 )
25 mpteqb ( ∀ 𝑧𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 → ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ↔ ∀ 𝑧𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ) )
26 0nn0 0 ∈ ℕ0
27 19 26 ifcli if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0
28 27 a1i ( 𝑧𝐼 → if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 )
29 25 28 mprg ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) ↔ ∀ 𝑧𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) )
30 iftrue ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , 1 , 0 ) = 1 )
31 eqeq1 ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦𝑥 = 𝑦 ) )
32 31 ifbid ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑦 , 1 , 0 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) )
33 30 32 eqeq12d ( 𝑧 = 𝑥 → ( if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) ↔ 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) )
34 33 rspcv ( 𝑥𝐼 → ( ∀ 𝑧𝐼 if ( 𝑧 = 𝑥 , 1 , 0 ) = if ( 𝑧 = 𝑦 , 1 , 0 ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) )
35 29 34 syl5bi ( 𝑥𝐼 → ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) )
36 16 35 syl ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) ) )
37 ax-1ne0 1 ≠ 0
38 eqeq1 ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ( 1 = 0 ↔ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) )
39 38 necon3abid ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ( 1 ≠ 0 ↔ ¬ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 ) )
40 37 39 mpbii ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → ¬ if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 )
41 iffalse ( ¬ 𝑥 = 𝑦 → if ( 𝑥 = 𝑦 , 1 , 0 ) = 0 )
42 40 41 nsyl2 ( 1 = if ( 𝑥 = 𝑦 , 1 , 0 ) → 𝑥 = 𝑦 )
43 36 42 syl6 ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → 𝑥 = 𝑦 ) )
44 24 43 mtod ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ¬ ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) )
45 iffalse ( ¬ ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) → if ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) = 0 )
46 44 45 syl ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → if ( ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧𝐼 ↦ if ( 𝑧 = 𝑦 , 1 , 0 ) ) , 1 , 0 ) = 0 )
47 23 46 eqtrd ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) → 1 = 0 )
48 47 3expia ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ) → ( ¬ 𝑥 = 𝑦1 = 0 ) )
49 48 necon1ad ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ) → ( 10𝑥 = 𝑦 ) )
50 10 49 mpd ( ( 𝜑 ∧ ( ( 𝑥𝐼𝑦𝐼 ) ∧ ( 𝑉𝑥 ) = ( 𝑉𝑦 ) ) ) → 𝑥 = 𝑦 )
51 50 expr ( ( 𝜑 ∧ ( 𝑥𝐼𝑦𝐼 ) ) → ( ( 𝑉𝑥 ) = ( 𝑉𝑦 ) → 𝑥 = 𝑦 ) )
52 51 ralrimivva ( 𝜑 → ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑥 ) = ( 𝑉𝑦 ) → 𝑥 = 𝑦 ) )
53 dff13 ( 𝑉 : 𝐼1-1𝐵 ↔ ( 𝑉 : 𝐼𝐵 ∧ ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑥 ) = ( 𝑉𝑦 ) → 𝑥 = 𝑦 ) ) )
54 9 52 53 sylanbrc ( 𝜑𝑉 : 𝐼1-1𝐵 )