Metamath Proof Explorer


Theorem pm54.43

Description: Theorem *54.43 of WhiteheadRussell p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations . This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 ), so that their A e. 1 means, in our notation, A e. { x | ( cardx ) = 1o } which is the same as A ~1o by pm54.43lem . We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem dju1p1e2 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007)

Ref Expression
Assertion pm54.43 ( ( 𝐴 ≈ 1o𝐵 ≈ 1o ) → ( ( 𝐴𝐵 ) = ∅ ↔ ( 𝐴𝐵 ) ≈ 2o ) )

Proof

Step Hyp Ref Expression
1 1oex 1o ∈ V
2 1 ensn1 { 1o } ≈ 1o
3 2 ensymi 1o ≈ { 1o }
4 entr ( ( 𝐵 ≈ 1o ∧ 1o ≈ { 1o } ) → 𝐵 ≈ { 1o } )
5 3 4 mpan2 ( 𝐵 ≈ 1o𝐵 ≈ { 1o } )
6 1on 1o ∈ On
7 6 onirri ¬ 1o ∈ 1o
8 disjsn ( ( 1o ∩ { 1o } ) = ∅ ↔ ¬ 1o ∈ 1o )
9 7 8 mpbir ( 1o ∩ { 1o } ) = ∅
10 unen ( ( ( 𝐴 ≈ 1o𝐵 ≈ { 1o } ) ∧ ( ( 𝐴𝐵 ) = ∅ ∧ ( 1o ∩ { 1o } ) = ∅ ) ) → ( 𝐴𝐵 ) ≈ ( 1o ∪ { 1o } ) )
11 9 10 mpanr2 ( ( ( 𝐴 ≈ 1o𝐵 ≈ { 1o } ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐴𝐵 ) ≈ ( 1o ∪ { 1o } ) )
12 11 ex ( ( 𝐴 ≈ 1o𝐵 ≈ { 1o } ) → ( ( 𝐴𝐵 ) = ∅ → ( 𝐴𝐵 ) ≈ ( 1o ∪ { 1o } ) ) )
13 5 12 sylan2 ( ( 𝐴 ≈ 1o𝐵 ≈ 1o ) → ( ( 𝐴𝐵 ) = ∅ → ( 𝐴𝐵 ) ≈ ( 1o ∪ { 1o } ) ) )
14 df-2o 2o = suc 1o
15 df-suc suc 1o = ( 1o ∪ { 1o } )
16 14 15 eqtri 2o = ( 1o ∪ { 1o } )
17 16 breq2i ( ( 𝐴𝐵 ) ≈ 2o ↔ ( 𝐴𝐵 ) ≈ ( 1o ∪ { 1o } ) )
18 13 17 syl6ibr ( ( 𝐴 ≈ 1o𝐵 ≈ 1o ) → ( ( 𝐴𝐵 ) = ∅ → ( 𝐴𝐵 ) ≈ 2o ) )
19 en1 ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
20 en1 ( 𝐵 ≈ 1o ↔ ∃ 𝑦 𝐵 = { 𝑦 } )
21 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
22 21 uneq2d ( 𝑥 = 𝑦 → ( { 𝑥 } ∪ { 𝑥 } ) = ( { 𝑥 } ∪ { 𝑦 } ) )
23 unidm ( { 𝑥 } ∪ { 𝑥 } ) = { 𝑥 }
24 22 23 eqtr3di ( 𝑥 = 𝑦 → ( { 𝑥 } ∪ { 𝑦 } ) = { 𝑥 } )
25 vex 𝑥 ∈ V
26 25 ensn1 { 𝑥 } ≈ 1o
27 1sdom2 1o ≺ 2o
28 ensdomtr ( ( { 𝑥 } ≈ 1o ∧ 1o ≺ 2o ) → { 𝑥 } ≺ 2o )
29 26 27 28 mp2an { 𝑥 } ≺ 2o
30 24 29 eqbrtrdi ( 𝑥 = 𝑦 → ( { 𝑥 } ∪ { 𝑦 } ) ≺ 2o )
31 sdomnen ( ( { 𝑥 } ∪ { 𝑦 } ) ≺ 2o → ¬ ( { 𝑥 } ∪ { 𝑦 } ) ≈ 2o )
32 30 31 syl ( 𝑥 = 𝑦 → ¬ ( { 𝑥 } ∪ { 𝑦 } ) ≈ 2o )
33 32 necon2ai ( ( { 𝑥 } ∪ { 𝑦 } ) ≈ 2o𝑥𝑦 )
34 disjsn2 ( 𝑥𝑦 → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ )
35 33 34 syl ( ( { 𝑥 } ∪ { 𝑦 } ) ≈ 2o → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ )
36 35 a1i ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑦 } ) → ( ( { 𝑥 } ∪ { 𝑦 } ) ≈ 2o → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) )
37 uneq12 ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑦 } ) → ( 𝐴𝐵 ) = ( { 𝑥 } ∪ { 𝑦 } ) )
38 37 breq1d ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑦 } ) → ( ( 𝐴𝐵 ) ≈ 2o ↔ ( { 𝑥 } ∪ { 𝑦 } ) ≈ 2o ) )
39 ineq12 ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑦 } ) → ( 𝐴𝐵 ) = ( { 𝑥 } ∩ { 𝑦 } ) )
40 39 eqeq1d ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑦 } ) → ( ( 𝐴𝐵 ) = ∅ ↔ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) )
41 36 38 40 3imtr4d ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑦 } ) → ( ( 𝐴𝐵 ) ≈ 2o → ( 𝐴𝐵 ) = ∅ ) )
42 41 ex ( 𝐴 = { 𝑥 } → ( 𝐵 = { 𝑦 } → ( ( 𝐴𝐵 ) ≈ 2o → ( 𝐴𝐵 ) = ∅ ) ) )
43 42 exlimdv ( 𝐴 = { 𝑥 } → ( ∃ 𝑦 𝐵 = { 𝑦 } → ( ( 𝐴𝐵 ) ≈ 2o → ( 𝐴𝐵 ) = ∅ ) ) )
44 43 exlimiv ( ∃ 𝑥 𝐴 = { 𝑥 } → ( ∃ 𝑦 𝐵 = { 𝑦 } → ( ( 𝐴𝐵 ) ≈ 2o → ( 𝐴𝐵 ) = ∅ ) ) )
45 44 imp ( ( ∃ 𝑥 𝐴 = { 𝑥 } ∧ ∃ 𝑦 𝐵 = { 𝑦 } ) → ( ( 𝐴𝐵 ) ≈ 2o → ( 𝐴𝐵 ) = ∅ ) )
46 19 20 45 syl2anb ( ( 𝐴 ≈ 1o𝐵 ≈ 1o ) → ( ( 𝐴𝐵 ) ≈ 2o → ( 𝐴𝐵 ) = ∅ ) )
47 18 46 impbid ( ( 𝐴 ≈ 1o𝐵 ≈ 1o ) → ( ( 𝐴𝐵 ) = ∅ ↔ ( 𝐴𝐵 ) ≈ 2o ) )