| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramtlecl.t |
⊢ 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) } |
| 2 |
|
breq1 |
⊢ ( 𝑛 = 𝑀 → ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) ↔ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ) |
| 3 |
2
|
imbi1d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ↔ ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) ) |
| 4 |
3
|
albidv |
⊢ ( 𝑛 = 𝑀 → ( ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ↔ ∀ 𝑠 ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) ) |
| 5 |
4 1
|
elrab2 |
⊢ ( 𝑀 ∈ 𝑇 ↔ ( 𝑀 ∈ ℕ0 ∧ ∀ 𝑠 ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) ) |
| 6 |
5
|
simplbi |
⊢ ( 𝑀 ∈ 𝑇 → 𝑀 ∈ ℕ0 ) |
| 7 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ℕ0 ) |
| 8 |
7
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℕ0 ) ) |
| 9 |
8
|
ssrdv |
⊢ ( 𝑀 ∈ ℕ0 → ( ℤ≥ ‘ 𝑀 ) ⊆ ℕ0 ) |
| 10 |
6 9
|
syl |
⊢ ( 𝑀 ∈ 𝑇 → ( ℤ≥ ‘ 𝑀 ) ⊆ ℕ0 ) |
| 11 |
5
|
simprbi |
⊢ ( 𝑀 ∈ 𝑇 → ∀ 𝑠 ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) |
| 12 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑛 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑛 ) |
| 14 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 15 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 16 |
14 15
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
| 17 |
6
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℕ0 ) |
| 18 |
16 17
|
sselid |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ* ) |
| 19 |
6 7
|
sylan |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ℕ0 ) |
| 20 |
16 19
|
sselid |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ℝ* ) |
| 21 |
|
vex |
⊢ 𝑠 ∈ V |
| 22 |
|
hashxrcl |
⊢ ( 𝑠 ∈ V → ( ♯ ‘ 𝑠 ) ∈ ℝ* ) |
| 23 |
21 22
|
mp1i |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ♯ ‘ 𝑠 ) ∈ ℝ* ) |
| 24 |
|
xrletr |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ ( ♯ ‘ 𝑠 ) ∈ ℝ* ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ ( ♯ ‘ 𝑠 ) ) → 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ) |
| 25 |
18 20 23 24
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ ( ♯ ‘ 𝑠 ) ) → 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ) |
| 26 |
13 25
|
mpand |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ) |
| 27 |
26
|
imim1d |
⊢ ( ( 𝑀 ∈ 𝑇 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) → ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) ) |
| 28 |
27
|
ralrimdva |
⊢ ( 𝑀 ∈ 𝑇 → ( ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) ) |
| 29 |
28
|
alimdv |
⊢ ( 𝑀 ∈ 𝑇 → ( ∀ 𝑠 ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) → ∀ 𝑠 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) ) |
| 30 |
11 29
|
mpd |
⊢ ( 𝑀 ∈ 𝑇 → ∀ 𝑠 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) |
| 31 |
|
ralcom4 |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ↔ ∀ 𝑠 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) |
| 32 |
30 31
|
sylibr |
⊢ ( 𝑀 ∈ 𝑇 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) |
| 33 |
|
ssrab |
⊢ ( ( ℤ≥ ‘ 𝑀 ) ⊆ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) } ↔ ( ( ℤ≥ ‘ 𝑀 ) ⊆ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) ) ) |
| 34 |
10 32 33
|
sylanbrc |
⊢ ( 𝑀 ∈ 𝑇 → ( ℤ≥ ‘ 𝑀 ) ⊆ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → 𝜑 ) } ) |
| 35 |
34 1
|
sseqtrrdi |
⊢ ( 𝑀 ∈ 𝑇 → ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑇 ) |