| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 4 | 2 3 | iswlk | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 5 |  | wrdred1 | ⊢ ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 7 | 3 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 8 |  | redwlklem | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝐹 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  →  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 9 | 8 | 3exp | ⊢ ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  ( 1  ≤  ( ♯ ‘ 𝐹 )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 1  ≤  ( ♯ ‘ 𝐹 )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 12 |  | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 13 |  | wrdred1hash | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 ) ) | 
						
							| 14 | 7 13 | sylan | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 ) ) | 
						
							| 15 |  | nn0z | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 16 |  | fzossrbm1 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℤ  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 18 |  | ssralv | ⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 20 | 17 | sselda | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 21 | 20 | fvresd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝑃 ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ) | 
						
							| 23 |  | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) | 
						
							| 25 | 15 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 26 |  | 1zzd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  1  ∈  ℤ ) | 
						
							| 27 |  | fzoaddel2 | ⊢ ( ( 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 𝑘  +  1 )  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 29 | 23 28 | sselid | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 30 | 29 | fvresd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 32 | 22 31 | eqeq12d | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 33 |  | fvres | ⊢ ( 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 37 | 22 | sneqd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  { ( 𝑃 ‘ 𝑘 ) }  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ) | 
						
							| 38 | 36 37 | eqeq12d | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) }  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ) ) | 
						
							| 39 | 22 31 | preq12d | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 40 | 39 36 | sseq12d | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  ↔  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 41 | 32 38 40 | ifpbi123d | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  ↔  if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 42 | 41 | biimpd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 43 | 42 | ralimdva | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 44 | 19 43 | syld | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 46 |  | oveq2 | ⊢ ( ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  =  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ) | 
						
							| 48 | 47 | raleqdv | ⊢ ( ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) )  ↔  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 50 | 45 49 | sylibd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  =  ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 51 | 12 14 50 | syl2an2r | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 52 | 6 11 51 | 3anim123d | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) )  →  ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 54 |  | id | ⊢ ( 𝐺  ∈  V  →  𝐺  ∈  V ) | 
						
							| 55 |  | resexg | ⊢ ( 𝐹  ∈  V  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  V ) | 
						
							| 56 |  | resexg | ⊢ ( 𝑃  ∈  V  →  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∈  V ) | 
						
							| 57 | 2 3 | iswlk | ⊢ ( ( 𝐺  ∈  V  ∧  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  V  ∧  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∈  V )  →  ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ↔  ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 58 | 57 | bicomd | ⊢ ( ( 𝐺  ∈  V  ∧  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  V  ∧  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∈  V )  →  ( ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) )  ↔  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 59 | 54 55 56 58 | syl3an | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ) ) if- ( ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 )  =  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) )  =  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ,  { ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ,  ( ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ‘ 𝑘 ) ) ) )  ↔  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 60 | 53 59 | imbitrid | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 61 | 60 | expcomd | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | 
						
							| 62 | 4 61 | sylbid | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | 
						
							| 63 | 1 62 | mpcom | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 64 | 63 | anabsi5 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  1  ≤  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹  ↾  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃  ↾  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |