| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reprdifc.c | ⊢ 𝐶  =  { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } | 
						
							| 2 |  | reprdifc.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ ) | 
						
							| 3 |  | reprdifc.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ ) | 
						
							| 4 |  | reprdifc.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | reprdifc.s | ⊢ ( 𝜑  →  𝑆  ∈  ℕ0 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑑 𝜑 | 
						
							| 7 |  | nfrab1 | ⊢ Ⅎ 𝑑 { 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑑 ∪  𝑥  ∈  ( 0 ..^ 𝑆 ) { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } | 
						
							| 9 | 4 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 10 | 2 9 5 | reprval | ⊢ ( 𝜑  →  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝜑  →  ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ↔  𝑑  ∈  { 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } ) ) | 
						
							| 12 |  | rabid | ⊢ ( 𝑑  ∈  { 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 }  ↔  ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 ) ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( 𝜑  →  ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ↔  ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 ) ) ) | 
						
							| 14 | 13 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ↔  ( ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) ) ) ) | 
						
							| 15 |  | eldif | ⊢ ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ↔  ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) ) ) | 
						
							| 16 | 15 | anbi1i | ⊢ ( ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ↔  ( ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 ) ) | 
						
							| 17 |  | an32 | ⊢ ( ( ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ↔  ( ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) ) ) | 
						
							| 18 | 16 17 | bitri | ⊢ ( ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ↔  ( ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ( ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ↔  ( ( 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) ) ) ) | 
						
							| 20 | 14 19 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ↔  ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 ) ) ) | 
						
							| 21 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 23 | 22 3 | ssexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 24 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ..^ 𝑆 )  ∈  V ) | 
						
							| 25 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  ( 0 ..^ 𝑆 )  ∈  V )  →  ( 𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( 𝜑  →  ( 𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  ( 𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) | 
						
							| 28 |  | ffnfv | ⊢ ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵  ↔  ( 𝑑  Fn  ( 0 ..^ 𝑆 )  ∧  ∀ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 29 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  𝐴  ⊆  ℕ ) | 
						
							| 30 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 31 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  𝑆  ∈  ℕ0 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) | 
						
							| 33 | 29 30 31 32 | reprf | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) | 
						
							| 34 | 33 | ffnd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  𝑑  Fn  ( 0 ..^ 𝑆 ) ) | 
						
							| 35 | 34 | biantrurd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  ( ∀ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 )  ∈  𝐵  ↔  ( 𝑑  Fn  ( 0 ..^ 𝑆 )  ∧  ∀ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 36 | 28 35 | bitr4id | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵  ↔  ∀ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 37 | 27 36 | bitrd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  ( 𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ↔  ∀ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 38 | 37 | notbid | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  ( ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ↔  ¬  ∀ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 39 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵  ↔  ¬  ∀ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 40 | 38 39 | bitr4di | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  →  ( ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ↔  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 41 | 40 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ¬  𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ↔  ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 42 | 20 41 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ↔  ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) ) | 
						
							| 43 |  | fveq1 | ⊢ ( 𝑐  =  𝑑  →  ( 𝑐 ‘ 𝑥 )  =  ( 𝑑 ‘ 𝑥 ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( 𝑐  =  𝑑  →  ( ( 𝑐 ‘ 𝑥 )  ∈  𝐵  ↔  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 45 | 44 | notbid | ⊢ ( 𝑐  =  𝑑  →  ( ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵  ↔  ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 46 | 45 | elrab | ⊢ ( 𝑑  ∈  { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 }  ↔  ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 47 | 46 | rexbii | ⊢ ( ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) 𝑑  ∈  { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 }  ↔  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 48 |  | r19.42v | ⊢ ( ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 )  ↔  ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 49 | 47 48 | bitri | ⊢ ( ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) 𝑑  ∈  { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 }  ↔  ( 𝑑  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) ¬  ( 𝑑 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 50 | 42 49 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 )  ↔  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) 𝑑  ∈  { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } ) ) | 
						
							| 51 |  | rabid | ⊢ ( 𝑑  ∈  { 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 }  ↔  ( 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 ) ) | 
						
							| 52 |  | eliun | ⊢ ( 𝑑  ∈  ∪  𝑥  ∈  ( 0 ..^ 𝑆 ) { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 }  ↔  ∃ 𝑥  ∈  ( 0 ..^ 𝑆 ) 𝑑  ∈  { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } ) | 
						
							| 53 | 50 51 52 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑑  ∈  { 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 }  ↔  𝑑  ∈  ∪  𝑥  ∈  ( 0 ..^ 𝑆 ) { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } ) ) | 
						
							| 54 | 6 7 8 53 | eqrd | ⊢ ( 𝜑  →  { 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 }  =  ∪  𝑥  ∈  ( 0 ..^ 𝑆 ) { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } ) | 
						
							| 55 | 3 9 5 | reprval | ⊢ ( 𝜑  →  ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } ) | 
						
							| 56 | 10 55 | difeq12d | ⊢ ( 𝜑  →  ( ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∖  ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) )  =  ( { 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 }  ∖  { 𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } ) ) | 
						
							| 57 |  | difrab2 | ⊢ ( { 𝑑  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 }  ∖  { 𝑑  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } )  =  { 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } | 
						
							| 58 | 56 57 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∖  ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) )  =  { 𝑑  ∈  ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∖  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 )  =  𝑀 } ) | 
						
							| 59 | 1 | a1i | ⊢ ( 𝜑  →  𝐶  =  { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } ) | 
						
							| 60 | 59 | iuneq2d | ⊢ ( 𝜑  →  ∪  𝑥  ∈  ( 0 ..^ 𝑆 ) 𝐶  =  ∪  𝑥  ∈  ( 0 ..^ 𝑆 ) { 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∣  ¬  ( 𝑐 ‘ 𝑥 )  ∈  𝐵 } ) | 
						
							| 61 | 54 58 60 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∖  ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) )  =  ∪  𝑥  ∈  ( 0 ..^ 𝑆 ) 𝐶 ) |