Metamath Proof Explorer


Theorem smndex1sgrp

Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a semigroup. (Contributed by AV, 14-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m 𝑀 = ( EndoFMnd ‘ ℕ0 )
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) )
smndex1ibas.g 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0𝑛 ) )
smndex1mgm.b 𝐵 = ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } )
smndex1mgm.s 𝑆 = ( 𝑀s 𝐵 )
Assertion smndex1sgrp 𝑆 ∈ Smgrp

Proof

Step Hyp Ref Expression
1 smndex1ibas.m 𝑀 = ( EndoFMnd ‘ ℕ0 )
2 smndex1ibas.n 𝑁 ∈ ℕ
3 smndex1ibas.i 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) )
4 smndex1ibas.g 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0𝑛 ) )
5 smndex1mgm.b 𝐵 = ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } )
6 smndex1mgm.s 𝑆 = ( 𝑀s 𝐵 )
7 1 2 3 4 5 6 smndex1mgm 𝑆 ∈ Mgm
8 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
9 eqid ( +g𝑆 ) = ( +g𝑆 )
10 8 9 mgmcl ( ( 𝑆 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
11 7 10 mp3an1 ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
12 snex { 𝐼 } ∈ V
13 ovex ( 0 ..^ 𝑁 ) ∈ V
14 snex { ( 𝐺𝑛 ) } ∈ V
15 13 14 iunex 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ∈ V
16 12 15 unex ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) ∈ V
17 5 16 eqeltri 𝐵 ∈ V
18 eqid ( +g𝑀 ) = ( +g𝑀 )
19 6 18 ressplusg ( 𝐵 ∈ V → ( +g𝑀 ) = ( +g𝑆 ) )
20 17 19 ax-mp ( +g𝑀 ) = ( +g𝑆 )
21 20 eqcomi ( +g𝑆 ) = ( +g𝑀 )
22 21 oveqi ( 𝑥 ( +g𝑆 ) 𝑦 ) = ( 𝑥 ( +g𝑀 ) 𝑦 )
23 1 2 3 4 5 6 smndex1bas ( Base ‘ 𝑆 ) = 𝐵
24 1 2 3 4 5 smndex1basss 𝐵 ⊆ ( Base ‘ 𝑀 )
25 23 24 eqsstri ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 )
26 ssel ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑥 ∈ ( Base ‘ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) )
27 ssel ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) )
28 26 27 anim12d ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) )
29 25 28 ax-mp ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) )
30 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
31 1 30 18 efmndov ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑥𝑦 ) )
32 29 31 syl ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) = ( 𝑥𝑦 ) )
33 22 32 syl5eq ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) = ( 𝑥𝑦 ) )
34 11 33 symggrplem ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑎 ( +g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑐 ) = ( 𝑎 ( +g𝑆 ) ( 𝑏 ( +g𝑆 ) 𝑐 ) ) )
35 34 rgen3 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑐 ) = ( 𝑎 ( +g𝑆 ) ( 𝑏 ( +g𝑆 ) 𝑐 ) )
36 8 9 issgrp ( 𝑆 ∈ Smgrp ↔ ( 𝑆 ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑐 ) = ( 𝑎 ( +g𝑆 ) ( 𝑏 ( +g𝑆 ) 𝑐 ) ) ) )
37 7 35 36 mpbir2an 𝑆 ∈ Smgrp