Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
2 |
|
nnnn0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) |
3 |
|
pc11 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
5 |
4
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
6 |
|
eleq1 |
⊢ ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) |
7 |
|
dfbi3 |
⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ↔ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ∨ ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) ) |
8 |
|
sqfpc |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ 1 ) |
9 |
8
|
ad4ant124 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ 1 ) |
10 |
|
nnle1eq1 |
⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ → ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ↔ ( 𝑝 pCnt 𝐴 ) = 1 ) ) |
11 |
9 10
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ → ( 𝑝 pCnt 𝐴 ) = 1 ) ) |
12 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐵 ∈ ℕ ) |
13 |
12
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ ) |
14 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( μ ‘ 𝐵 ) ≠ 0 ) |
15 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
16 |
|
sqfpc |
⊢ ( ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ≤ 1 ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ≤ 1 ) |
18 |
|
nnle1eq1 |
⊢ ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ → ( ( 𝑝 pCnt 𝐵 ) ≤ 1 ↔ ( 𝑝 pCnt 𝐵 ) = 1 ) ) |
19 |
17 18
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ → ( 𝑝 pCnt 𝐵 ) = 1 ) ) |
20 |
11 19
|
anim12d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) = 1 ∧ ( 𝑝 pCnt 𝐵 ) = 1 ) ) ) |
21 |
|
eqtr3 |
⊢ ( ( ( 𝑝 pCnt 𝐴 ) = 1 ∧ ( 𝑝 pCnt 𝐵 ) = 1 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) |
22 |
20 21
|
syl6 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
23 |
|
id |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) |
24 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐴 ∈ ℕ ) |
25 |
|
pccl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
26 |
23 24 25
|
syl2anr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
27 |
|
elnn0 |
⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐴 ) = 0 ) ) |
28 |
26 27
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐴 ) = 0 ) ) |
29 |
28
|
ord |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ → ( 𝑝 pCnt 𝐴 ) = 0 ) ) |
30 |
|
pccl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) |
31 |
23 12 30
|
syl2anr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) |
32 |
|
elnn0 |
⊢ ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ↔ ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐵 ) = 0 ) ) |
33 |
31 32
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐵 ) = 0 ) ) |
34 |
33
|
ord |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ → ( 𝑝 pCnt 𝐵 ) = 0 ) ) |
35 |
29 34
|
anim12d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) = 0 ∧ ( 𝑝 pCnt 𝐵 ) = 0 ) ) ) |
36 |
|
eqtr3 |
⊢ ( ( ( 𝑝 pCnt 𝐴 ) = 0 ∧ ( 𝑝 pCnt 𝐵 ) = 0 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) |
37 |
35 36
|
syl6 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
38 |
22 37
|
jaod |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ∨ ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
39 |
7 38
|
syl5bi |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
40 |
6 39
|
impbid2 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) ) |
41 |
|
pcelnn |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) |
42 |
23 24 41
|
syl2anr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) |
43 |
|
pcelnn |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ↔ 𝑝 ∥ 𝐵 ) ) |
44 |
23 12 43
|
syl2anr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ↔ 𝑝 ∥ 𝐵 ) ) |
45 |
42 44
|
bibi12d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ↔ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |
46 |
40 45
|
bitrd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |
47 |
46
|
ralbidva |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |
48 |
5 47
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |