| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnn0 |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
pc11 |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
4
|
ad2ant2r |
|
| 6 |
|
eleq1 |
|
| 7 |
|
dfbi3 |
|
| 8 |
|
sqfpc |
|
| 9 |
8
|
ad4ant124 |
|
| 10 |
|
nnle1eq1 |
|
| 11 |
9 10
|
syl5ibcom |
|
| 12 |
|
simprl |
|
| 13 |
12
|
adantr |
|
| 14 |
|
simplrr |
|
| 15 |
|
simpr |
|
| 16 |
|
sqfpc |
|
| 17 |
13 14 15 16
|
syl3anc |
|
| 18 |
|
nnle1eq1 |
|
| 19 |
17 18
|
syl5ibcom |
|
| 20 |
11 19
|
anim12d |
|
| 21 |
|
eqtr3 |
|
| 22 |
20 21
|
syl6 |
|
| 23 |
|
id |
|
| 24 |
|
simpll |
|
| 25 |
|
pccl |
|
| 26 |
23 24 25
|
syl2anr |
|
| 27 |
|
elnn0 |
|
| 28 |
26 27
|
sylib |
|
| 29 |
28
|
ord |
|
| 30 |
|
pccl |
|
| 31 |
23 12 30
|
syl2anr |
|
| 32 |
|
elnn0 |
|
| 33 |
31 32
|
sylib |
|
| 34 |
33
|
ord |
|
| 35 |
29 34
|
anim12d |
|
| 36 |
|
eqtr3 |
|
| 37 |
35 36
|
syl6 |
|
| 38 |
22 37
|
jaod |
|
| 39 |
7 38
|
biimtrid |
|
| 40 |
6 39
|
impbid2 |
|
| 41 |
|
pcelnn |
|
| 42 |
23 24 41
|
syl2anr |
|
| 43 |
|
pcelnn |
|
| 44 |
23 12 43
|
syl2anr |
|
| 45 |
42 44
|
bibi12d |
|
| 46 |
40 45
|
bitrd |
|
| 47 |
46
|
ralbidva |
|
| 48 |
5 47
|
bitrd |
|