Metamath Proof Explorer


Theorem txhmeo

Description: Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses txhmeo.1 𝑋 = 𝐽
txhmeo.2 𝑌 = 𝐾
txhmeo.3 ( 𝜑𝐹 ∈ ( 𝐽 Homeo 𝐿 ) )
txhmeo.4 ( 𝜑𝐺 ∈ ( 𝐾 Homeo 𝑀 ) )
Assertion txhmeo ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) ∈ ( ( 𝐽 ×t 𝐾 ) Homeo ( 𝐿 ×t 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 txhmeo.1 𝑋 = 𝐽
2 txhmeo.2 𝑌 = 𝐾
3 txhmeo.3 ( 𝜑𝐹 ∈ ( 𝐽 Homeo 𝐿 ) )
4 txhmeo.4 ( 𝜑𝐺 ∈ ( 𝐾 Homeo 𝑀 ) )
5 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐿 ) → 𝐹 ∈ ( 𝐽 Cn 𝐿 ) )
6 3 5 syl ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐿 ) )
7 cntop1 ( 𝐹 ∈ ( 𝐽 Cn 𝐿 ) → 𝐽 ∈ Top )
8 6 7 syl ( 𝜑𝐽 ∈ Top )
9 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
10 8 9 sylib ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
11 hmeocn ( 𝐺 ∈ ( 𝐾 Homeo 𝑀 ) → 𝐺 ∈ ( 𝐾 Cn 𝑀 ) )
12 4 11 syl ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝑀 ) )
13 cntop1 ( 𝐺 ∈ ( 𝐾 Cn 𝑀 ) → 𝐾 ∈ Top )
14 12 13 syl ( 𝜑𝐾 ∈ Top )
15 2 toptopon ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) )
16 14 15 sylib ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
17 10 16 cnmpt1st ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) )
18 10 16 17 6 cnmpt21f ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌 ↦ ( 𝐹𝑥 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) )
19 10 16 cnmpt2nd ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌𝑦 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) )
20 10 16 19 12 cnmpt21f ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌 ↦ ( 𝐺𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) )
21 10 16 18 20 cnmpt2t ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) )
22 vex 𝑥 ∈ V
23 vex 𝑦 ∈ V
24 22 23 op1std ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑢 ) = 𝑥 )
25 24 fveq2d ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐹 ‘ ( 1st𝑢 ) ) = ( 𝐹𝑥 ) )
26 22 23 op2ndd ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑢 ) = 𝑦 )
27 26 fveq2d ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐺 ‘ ( 2nd𝑢 ) ) = ( 𝐺𝑦 ) )
28 25 27 opeq12d ( 𝑢 = ⟨ 𝑥 , 𝑦 ⟩ → ⟨ ( 𝐹 ‘ ( 1st𝑢 ) ) , ( 𝐺 ‘ ( 2nd𝑢 ) ) ⟩ = ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ )
29 28 mpompt ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑢 ) ) , ( 𝐺 ‘ ( 2nd𝑢 ) ) ⟩ ) = ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ )
30 29 eqcomi ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) = ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑢 ) ) , ( 𝐺 ‘ ( 2nd𝑢 ) ) ⟩ )
31 eqid 𝐿 = 𝐿
32 1 31 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐿 ) → 𝐹 : 𝑋 𝐿 )
33 6 32 syl ( 𝜑𝐹 : 𝑋 𝐿 )
34 xp1st ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( 1st𝑢 ) ∈ 𝑋 )
35 ffvelrn ( ( 𝐹 : 𝑋 𝐿 ∧ ( 1st𝑢 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 1st𝑢 ) ) ∈ 𝐿 )
36 33 34 35 syl2an ( ( 𝜑𝑢 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐹 ‘ ( 1st𝑢 ) ) ∈ 𝐿 )
37 eqid 𝑀 = 𝑀
38 2 37 cnf ( 𝐺 ∈ ( 𝐾 Cn 𝑀 ) → 𝐺 : 𝑌 𝑀 )
39 12 38 syl ( 𝜑𝐺 : 𝑌 𝑀 )
40 xp2nd ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( 2nd𝑢 ) ∈ 𝑌 )
41 ffvelrn ( ( 𝐺 : 𝑌 𝑀 ∧ ( 2nd𝑢 ) ∈ 𝑌 ) → ( 𝐺 ‘ ( 2nd𝑢 ) ) ∈ 𝑀 )
42 39 40 41 syl2an ( ( 𝜑𝑢 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐺 ‘ ( 2nd𝑢 ) ) ∈ 𝑀 )
43 36 42 opelxpd ( ( 𝜑𝑢 ∈ ( 𝑋 × 𝑌 ) ) → ⟨ ( 𝐹 ‘ ( 1st𝑢 ) ) , ( 𝐺 ‘ ( 2nd𝑢 ) ) ⟩ ∈ ( 𝐿 × 𝑀 ) )
44 1 31 hmeof1o ( 𝐹 ∈ ( 𝐽 Homeo 𝐿 ) → 𝐹 : 𝑋1-1-onto 𝐿 )
45 3 44 syl ( 𝜑𝐹 : 𝑋1-1-onto 𝐿 )
46 f1ocnv ( 𝐹 : 𝑋1-1-onto 𝐿 𝐹 : 𝐿1-1-onto𝑋 )
47 f1of ( 𝐹 : 𝐿1-1-onto𝑋 𝐹 : 𝐿𝑋 )
48 45 46 47 3syl ( 𝜑 𝐹 : 𝐿𝑋 )
49 xp1st ( 𝑣 ∈ ( 𝐿 × 𝑀 ) → ( 1st𝑣 ) ∈ 𝐿 )
50 ffvelrn ( ( 𝐹 : 𝐿𝑋 ∧ ( 1st𝑣 ) ∈ 𝐿 ) → ( 𝐹 ‘ ( 1st𝑣 ) ) ∈ 𝑋 )
51 48 49 50 syl2an ( ( 𝜑𝑣 ∈ ( 𝐿 × 𝑀 ) ) → ( 𝐹 ‘ ( 1st𝑣 ) ) ∈ 𝑋 )
52 2 37 hmeof1o ( 𝐺 ∈ ( 𝐾 Homeo 𝑀 ) → 𝐺 : 𝑌1-1-onto 𝑀 )
53 4 52 syl ( 𝜑𝐺 : 𝑌1-1-onto 𝑀 )
54 f1ocnv ( 𝐺 : 𝑌1-1-onto 𝑀 𝐺 : 𝑀1-1-onto𝑌 )
55 f1of ( 𝐺 : 𝑀1-1-onto𝑌 𝐺 : 𝑀𝑌 )
56 53 54 55 3syl ( 𝜑 𝐺 : 𝑀𝑌 )
57 xp2nd ( 𝑣 ∈ ( 𝐿 × 𝑀 ) → ( 2nd𝑣 ) ∈ 𝑀 )
58 ffvelrn ( ( 𝐺 : 𝑀𝑌 ∧ ( 2nd𝑣 ) ∈ 𝑀 ) → ( 𝐺 ‘ ( 2nd𝑣 ) ) ∈ 𝑌 )
59 56 57 58 syl2an ( ( 𝜑𝑣 ∈ ( 𝐿 × 𝑀 ) ) → ( 𝐺 ‘ ( 2nd𝑣 ) ) ∈ 𝑌 )
60 51 59 opelxpd ( ( 𝜑𝑣 ∈ ( 𝐿 × 𝑀 ) ) → ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ ∈ ( 𝑋 × 𝑌 ) )
61 45 adantr ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → 𝐹 : 𝑋1-1-onto 𝐿 )
62 34 ad2antrl ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( 1st𝑢 ) ∈ 𝑋 )
63 49 ad2antll ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( 1st𝑣 ) ∈ 𝐿 )
64 f1ocnvfvb ( ( 𝐹 : 𝑋1-1-onto 𝐿 ∧ ( 1st𝑢 ) ∈ 𝑋 ∧ ( 1st𝑣 ) ∈ 𝐿 ) → ( ( 𝐹 ‘ ( 1st𝑢 ) ) = ( 1st𝑣 ) ↔ ( 𝐹 ‘ ( 1st𝑣 ) ) = ( 1st𝑢 ) ) )
65 61 62 63 64 syl3anc ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 1st𝑢 ) ) = ( 1st𝑣 ) ↔ ( 𝐹 ‘ ( 1st𝑣 ) ) = ( 1st𝑢 ) ) )
66 eqcom ( ( 1st𝑣 ) = ( 𝐹 ‘ ( 1st𝑢 ) ) ↔ ( 𝐹 ‘ ( 1st𝑢 ) ) = ( 1st𝑣 ) )
67 eqcom ( ( 1st𝑢 ) = ( 𝐹 ‘ ( 1st𝑣 ) ) ↔ ( 𝐹 ‘ ( 1st𝑣 ) ) = ( 1st𝑢 ) )
68 65 66 67 3bitr4g ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( ( 1st𝑣 ) = ( 𝐹 ‘ ( 1st𝑢 ) ) ↔ ( 1st𝑢 ) = ( 𝐹 ‘ ( 1st𝑣 ) ) ) )
69 53 adantr ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → 𝐺 : 𝑌1-1-onto 𝑀 )
70 40 ad2antrl ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( 2nd𝑢 ) ∈ 𝑌 )
71 57 ad2antll ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( 2nd𝑣 ) ∈ 𝑀 )
72 f1ocnvfvb ( ( 𝐺 : 𝑌1-1-onto 𝑀 ∧ ( 2nd𝑢 ) ∈ 𝑌 ∧ ( 2nd𝑣 ) ∈ 𝑀 ) → ( ( 𝐺 ‘ ( 2nd𝑢 ) ) = ( 2nd𝑣 ) ↔ ( 𝐺 ‘ ( 2nd𝑣 ) ) = ( 2nd𝑢 ) ) )
73 69 70 71 72 syl3anc ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( ( 𝐺 ‘ ( 2nd𝑢 ) ) = ( 2nd𝑣 ) ↔ ( 𝐺 ‘ ( 2nd𝑣 ) ) = ( 2nd𝑢 ) ) )
74 eqcom ( ( 2nd𝑣 ) = ( 𝐺 ‘ ( 2nd𝑢 ) ) ↔ ( 𝐺 ‘ ( 2nd𝑢 ) ) = ( 2nd𝑣 ) )
75 eqcom ( ( 2nd𝑢 ) = ( 𝐺 ‘ ( 2nd𝑣 ) ) ↔ ( 𝐺 ‘ ( 2nd𝑣 ) ) = ( 2nd𝑢 ) )
76 73 74 75 3bitr4g ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( ( 2nd𝑣 ) = ( 𝐺 ‘ ( 2nd𝑢 ) ) ↔ ( 2nd𝑢 ) = ( 𝐺 ‘ ( 2nd𝑣 ) ) ) )
77 68 76 anbi12d ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( ( ( 1st𝑣 ) = ( 𝐹 ‘ ( 1st𝑢 ) ) ∧ ( 2nd𝑣 ) = ( 𝐺 ‘ ( 2nd𝑢 ) ) ) ↔ ( ( 1st𝑢 ) = ( 𝐹 ‘ ( 1st𝑣 ) ) ∧ ( 2nd𝑢 ) = ( 𝐺 ‘ ( 2nd𝑣 ) ) ) ) )
78 eqop ( 𝑣 ∈ ( 𝐿 × 𝑀 ) → ( 𝑣 = ⟨ ( 𝐹 ‘ ( 1st𝑢 ) ) , ( 𝐺 ‘ ( 2nd𝑢 ) ) ⟩ ↔ ( ( 1st𝑣 ) = ( 𝐹 ‘ ( 1st𝑢 ) ) ∧ ( 2nd𝑣 ) = ( 𝐺 ‘ ( 2nd𝑢 ) ) ) ) )
79 78 ad2antll ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( 𝑣 = ⟨ ( 𝐹 ‘ ( 1st𝑢 ) ) , ( 𝐺 ‘ ( 2nd𝑢 ) ) ⟩ ↔ ( ( 1st𝑣 ) = ( 𝐹 ‘ ( 1st𝑢 ) ) ∧ ( 2nd𝑣 ) = ( 𝐺 ‘ ( 2nd𝑢 ) ) ) ) )
80 eqop ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( 𝑢 = ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ ↔ ( ( 1st𝑢 ) = ( 𝐹 ‘ ( 1st𝑣 ) ) ∧ ( 2nd𝑢 ) = ( 𝐺 ‘ ( 2nd𝑣 ) ) ) ) )
81 80 ad2antrl ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( 𝑢 = ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ ↔ ( ( 1st𝑢 ) = ( 𝐹 ‘ ( 1st𝑣 ) ) ∧ ( 2nd𝑢 ) = ( 𝐺 ‘ ( 2nd𝑣 ) ) ) ) )
82 77 79 81 3bitr4rd ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝐿 × 𝑀 ) ) ) → ( 𝑢 = ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ ↔ 𝑣 = ⟨ ( 𝐹 ‘ ( 1st𝑢 ) ) , ( 𝐺 ‘ ( 2nd𝑢 ) ) ⟩ ) )
83 30 43 60 82 f1ocnv2d ( 𝜑 → ( ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) : ( 𝑋 × 𝑌 ) –1-1-onto→ ( 𝐿 × 𝑀 ) ∧ ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) = ( 𝑣 ∈ ( 𝐿 × 𝑀 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ ) ) )
84 83 simprd ( 𝜑 ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) = ( 𝑣 ∈ ( 𝐿 × 𝑀 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ ) )
85 vex 𝑧 ∈ V
86 vex 𝑤 ∈ V
87 85 86 op1std ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ → ( 1st𝑣 ) = 𝑧 )
88 87 fveq2d ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐹 ‘ ( 1st𝑣 ) ) = ( 𝐹𝑧 ) )
89 85 86 op2ndd ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ → ( 2nd𝑣 ) = 𝑤 )
90 89 fveq2d ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐺 ‘ ( 2nd𝑣 ) ) = ( 𝐺𝑤 ) )
91 88 90 opeq12d ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ → ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ = ⟨ ( 𝐹𝑧 ) , ( 𝐺𝑤 ) ⟩ )
92 91 mpompt ( 𝑣 ∈ ( 𝐿 × 𝑀 ) ↦ ⟨ ( 𝐹 ‘ ( 1st𝑣 ) ) , ( 𝐺 ‘ ( 2nd𝑣 ) ) ⟩ ) = ( 𝑧 𝐿 , 𝑤 𝑀 ↦ ⟨ ( 𝐹𝑧 ) , ( 𝐺𝑤 ) ⟩ )
93 84 92 eqtrdi ( 𝜑 ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) = ( 𝑧 𝐿 , 𝑤 𝑀 ↦ ⟨ ( 𝐹𝑧 ) , ( 𝐺𝑤 ) ⟩ ) )
94 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐿 ) → 𝐿 ∈ Top )
95 6 94 syl ( 𝜑𝐿 ∈ Top )
96 31 toptopon ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ 𝐿 ) )
97 95 96 sylib ( 𝜑𝐿 ∈ ( TopOn ‘ 𝐿 ) )
98 cntop2 ( 𝐺 ∈ ( 𝐾 Cn 𝑀 ) → 𝑀 ∈ Top )
99 12 98 syl ( 𝜑𝑀 ∈ Top )
100 37 toptopon ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ 𝑀 ) )
101 99 100 sylib ( 𝜑𝑀 ∈ ( TopOn ‘ 𝑀 ) )
102 97 101 cnmpt1st ( 𝜑 → ( 𝑧 𝐿 , 𝑤 𝑀𝑧 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐿 ) )
103 hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐿 ) → 𝐹 ∈ ( 𝐿 Cn 𝐽 ) )
104 3 103 syl ( 𝜑 𝐹 ∈ ( 𝐿 Cn 𝐽 ) )
105 97 101 102 104 cnmpt21f ( 𝜑 → ( 𝑧 𝐿 , 𝑤 𝑀 ↦ ( 𝐹𝑧 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) )
106 97 101 cnmpt2nd ( 𝜑 → ( 𝑧 𝐿 , 𝑤 𝑀𝑤 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑀 ) )
107 hmeocnvcn ( 𝐺 ∈ ( 𝐾 Homeo 𝑀 ) → 𝐺 ∈ ( 𝑀 Cn 𝐾 ) )
108 4 107 syl ( 𝜑 𝐺 ∈ ( 𝑀 Cn 𝐾 ) )
109 97 101 106 108 cnmpt21f ( 𝜑 → ( 𝑧 𝐿 , 𝑤 𝑀 ↦ ( 𝐺𝑤 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐾 ) )
110 97 101 105 109 cnmpt2t ( 𝜑 → ( 𝑧 𝐿 , 𝑤 𝑀 ↦ ⟨ ( 𝐹𝑧 ) , ( 𝐺𝑤 ) ⟩ ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn ( 𝐽 ×t 𝐾 ) ) )
111 93 110 eqeltrd ( 𝜑 ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn ( 𝐽 ×t 𝐾 ) ) )
112 ishmeo ( ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) ∈ ( ( 𝐽 ×t 𝐾 ) Homeo ( 𝐿 ×t 𝑀 ) ) ↔ ( ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ∧ ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn ( 𝐽 ×t 𝐾 ) ) ) )
113 21 111 112 sylanbrc ( 𝜑 → ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑦 ) ⟩ ) ∈ ( ( 𝐽 ×t 𝐾 ) Homeo ( 𝐿 ×t 𝑀 ) ) )