| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrspan.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uhgrspan.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
uhgrspan.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
| 4 |
|
uhgrspan.q |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 5 |
|
uhgrspan.r |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) |
| 6 |
|
uhgrspan.g |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 7 |
|
edgval |
⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) |
| 8 |
7
|
eleq2i |
⊢ ( 𝑒 ∈ ( Edg ‘ 𝑆 ) ↔ 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) ) |
| 9 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 10 |
|
funres |
⊢ ( Fun 𝐸 → Fun ( 𝐸 ↾ 𝐴 ) ) |
| 11 |
6 9 10
|
3syl |
⊢ ( 𝜑 → Fun ( 𝐸 ↾ 𝐴 ) ) |
| 12 |
5
|
funeqd |
⊢ ( 𝜑 → ( Fun ( iEdg ‘ 𝑆 ) ↔ Fun ( 𝐸 ↾ 𝐴 ) ) ) |
| 13 |
11 12
|
mpbird |
⊢ ( 𝜑 → Fun ( iEdg ‘ 𝑆 ) ) |
| 14 |
|
elrnrexdmb |
⊢ ( Fun ( iEdg ‘ 𝑆 ) → ( 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) |
| 16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) |
| 17 |
16
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑖 ) ) |
| 18 |
5
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐸 ↾ 𝐴 ) ) |
| 19 |
|
dmres |
⊢ dom ( 𝐸 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐸 ) |
| 20 |
18 19
|
eqtrdi |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = ( 𝐴 ∩ dom 𝐸 ) ) |
| 21 |
20
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ↔ 𝑖 ∈ ( 𝐴 ∩ dom 𝐸 ) ) ) |
| 22 |
|
elinel1 |
⊢ ( 𝑖 ∈ ( 𝐴 ∩ dom 𝐸 ) → 𝑖 ∈ 𝐴 ) |
| 23 |
21 22
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑖 ∈ 𝐴 ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑖 ∈ 𝐴 ) |
| 25 |
24
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |
| 26 |
17 25
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |
| 27 |
|
elinel2 |
⊢ ( 𝑖 ∈ ( 𝐴 ∩ dom 𝐸 ) → 𝑖 ∈ dom 𝐸 ) |
| 28 |
21 27
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑖 ∈ dom 𝐸 ) ) |
| 29 |
28
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑖 ∈ dom 𝐸 ) |
| 30 |
1 2
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) |
| 31 |
6 29 30
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) |
| 32 |
4
|
pweqd |
⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝑆 ) = 𝒫 𝑉 ) |
| 33 |
32
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 𝑉 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 𝑉 ) ) |
| 35 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑖 ) ∈ V |
| 36 |
35
|
elpw |
⊢ ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 𝑉 ↔ ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) |
| 37 |
34 36
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) ) |
| 38 |
31 37
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 39 |
26 38
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 40 |
|
eleq1 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 41 |
39 40
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 42 |
41
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 43 |
15 42
|
sylbid |
⊢ ( 𝜑 → ( 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 44 |
8 43
|
biimtrid |
⊢ ( 𝜑 → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 45 |
44
|
ssrdv |
⊢ ( 𝜑 → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |