| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 | 1 | ewlkprop | ⊢ ( 𝐹  ∈  ( 𝐺  EdgWalks  𝑆 )  →  ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 3 |  | fvex | ⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∈  V | 
						
							| 4 |  | hashin | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∈  V  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) ) | 
						
							| 6 |  | simpl3 | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝐺  ∈  UPGraph ) | 
						
							| 7 |  | upgruhgr | ⊢ ( 𝐺  ∈  UPGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 8 | 1 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐺  ∈  UPGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 10 | 9 | funfnd | ⊢ ( 𝐺  ∈  UPGraph  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 13 |  | elfzofz | ⊢ ( 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 14 |  | fz1fzo0m1 | ⊢ ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐹 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 16 |  | wrdsymbcl | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ( 𝑘  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( 𝑘  −  1 ) )  ∈  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 17 | 15 16 | sylan2 | ⊢ ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( 𝑘  −  1 ) )  ∈  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 18 | 17 | 3ad2antl2 | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ ( 𝑘  −  1 ) )  ∈  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 19 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 20 | 19 1 | upgrle | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 )  ∧  ( 𝐹 ‘ ( 𝑘  −  1 ) )  ∈  dom  ( iEdg ‘ 𝐺 ) )  →  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ≤  2 ) | 
						
							| 21 | 6 12 18 20 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ≤  2 ) | 
						
							| 22 | 3 | inex1 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  ∈  V | 
						
							| 23 |  | hashxrcl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) )  ∈  V  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∈  ℝ* ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∈  ℝ* | 
						
							| 25 |  | hashxrcl | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∈  V  →  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ℝ* ) | 
						
							| 26 | 3 25 | ax-mp | ⊢ ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ℝ* | 
						
							| 27 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 28 | 27 | rexri | ⊢ 2  ∈  ℝ* | 
						
							| 29 | 24 26 28 | 3pm3.2i | ⊢ ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∈  ℝ*  ∧  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ℝ*  ∧  2  ∈  ℝ* ) | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∈  ℝ*  ∧  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ℝ*  ∧  2  ∈  ℝ* ) ) | 
						
							| 31 |  | xrletr | ⊢ ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∈  ℝ*  ∧  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ℝ*  ∧  2  ∈  ℝ* )  →  ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ∧  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ≤  2 )  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ∧  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  ≤  2 )  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2 ) ) | 
						
							| 33 | 21 32 | mpan2d | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) ) )  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2 ) ) | 
						
							| 34 | 5 33 | mpi | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2 ) | 
						
							| 35 |  | xnn0xr | ⊢ ( 𝑆  ∈  ℕ0*  →  𝑆  ∈  ℝ* ) | 
						
							| 36 | 24 | a1i | ⊢ ( 𝑆  ∈  ℕ0*  →  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∈  ℝ* ) | 
						
							| 37 | 28 | a1i | ⊢ ( 𝑆  ∈  ℕ0*  →  2  ∈  ℝ* ) | 
						
							| 38 |  | xrletr | ⊢ ( ( 𝑆  ∈  ℝ*  ∧  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∈  ℝ*  ∧  2  ∈  ℝ* )  →  ( ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∧  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2 )  →  𝑆  ≤  2 ) ) | 
						
							| 39 | 35 36 37 38 | syl3anc | ⊢ ( 𝑆  ∈  ℕ0*  →  ( ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ∧  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2 )  →  𝑆  ≤  2 ) ) | 
						
							| 40 | 39 | expcomd | ⊢ ( 𝑆  ∈  ℕ0*  →  ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2  →  ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  𝑆  ≤  2 ) ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  →  ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2  →  ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  𝑆  ≤  2 ) ) ) | 
						
							| 42 | 41 | 3ad2ant1 | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  →  ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2  →  ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  𝑆  ≤  2 ) ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  ≤  2  →  ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  𝑆  ≤  2 ) ) ) | 
						
							| 44 | 34 43 | mpd | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  ∧  𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  𝑆  ≤  2 ) ) | 
						
							| 45 | 44 | ralimdva | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝐺  ∈  UPGraph )  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2 ) ) | 
						
							| 46 | 45 | 3exp | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  →  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  ( 𝐺  ∈  UPGraph  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2 ) ) ) ) | 
						
							| 47 | 46 | com34 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  →  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  ( 𝐺  ∈  UPGraph  →  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2 ) ) ) ) | 
						
							| 48 | 47 | 3imp | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) )  →  ( 𝐺  ∈  UPGraph  →  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2 ) ) | 
						
							| 49 |  | lencl | ⊢ ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 50 |  | 1zzd | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  1  ∈  ℤ ) | 
						
							| 51 |  | nn0z | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 52 |  | fzon | ⊢ ( ( 1  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℤ )  →  ( ( ♯ ‘ 𝐹 )  ≤  1  ↔  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  =  ∅ ) ) | 
						
							| 53 | 50 51 52 | syl2anc | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  ≤  1  ↔  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  =  ∅ ) ) | 
						
							| 54 |  | nn0re | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 55 |  | 1red | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 56 | 54 55 | lenltd | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  ≤  1  ↔  ¬  1  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 57 | 53 56 | bitr3d | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( 1 ..^ ( ♯ ‘ 𝐹 ) )  =  ∅  ↔  ¬  1  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 58 | 57 | biimpd | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( 1 ..^ ( ♯ ‘ 𝐹 ) )  =  ∅  →  ¬  1  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 59 | 58 | necon2ad | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ≠  ∅ ) ) | 
						
							| 60 |  | rspn0 | ⊢ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ≠  ∅  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2  →  𝑆  ≤  2 ) ) | 
						
							| 61 | 59 60 | syl6com | ⊢ ( 1  <  ( ♯ ‘ 𝐹 )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2  →  𝑆  ≤  2 ) ) ) | 
						
							| 62 | 61 | com3l | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  𝑆  ≤  2 ) ) ) | 
						
							| 63 | 49 62 | syl | ⊢ ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  𝑆  ≤  2 ) ) ) | 
						
							| 64 | 63 | 3ad2ant2 | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) )  →  ( ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  2  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  𝑆  ≤  2 ) ) ) | 
						
							| 65 | 48 64 | syld | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  ℕ0* )  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) )  →  ( 𝐺  ∈  UPGraph  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  𝑆  ≤  2 ) ) ) | 
						
							| 66 | 2 65 | syl | ⊢ ( 𝐹  ∈  ( 𝐺  EdgWalks  𝑆 )  →  ( 𝐺  ∈  UPGraph  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  𝑆  ≤  2 ) ) ) | 
						
							| 67 | 66 | 3imp21 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹  ∈  ( 𝐺  EdgWalks  𝑆 )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  𝑆  ≤  2 ) |