| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wspniunwspnon.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wspthsnonn0vne | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ≠  ∅ )  →  𝑥  ≠  𝑦 ) | 
						
							| 3 | 2 | ex | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ≠  ∅  →  𝑥  ≠  𝑦 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ≠  ∅  →  𝑥  ≠  𝑦 ) ) | 
						
							| 5 |  | ne0i | ⊢ ( 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  →  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ≠  ∅ ) | 
						
							| 6 | 4 5 | impel | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  ∧  𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 7 | 6 | necomd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  ∧  𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) )  →  𝑦  ≠  𝑥 ) | 
						
							| 8 | 7 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  →  𝑦  ≠  𝑥 ) ) | 
						
							| 9 | 8 | pm4.71rd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  ( 𝑦  ≠  𝑥  ∧  𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( ∃ 𝑦  ∈  𝑉 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  ∃ 𝑦  ∈  𝑉 ( 𝑦  ≠  𝑥  ∧  𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) ) | 
						
							| 11 |  | rexdifsn | ⊢ ( ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  ∃ 𝑦  ∈  𝑉 ( 𝑦  ≠  𝑥  ∧  𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) | 
						
							| 12 | 10 11 | bitr4di | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( ∃ 𝑦  ∈  𝑉 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) | 
						
							| 14 | 1 | wspthsnwspthsnon | ⊢ ( 𝑤  ∈  ( 𝑁  WSPathsN  𝐺 )  ↔  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) | 
						
							| 15 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 16 |  | eleq1w | ⊢ ( 𝑝  =  𝑤  →  ( 𝑝  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) | 
						
							| 17 | 16 | rexbidv | ⊢ ( 𝑝  =  𝑤  →  ( ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑝  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) | 
						
							| 18 | 17 | rexbidv | ⊢ ( 𝑝  =  𝑤  →  ( ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑝  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  ↔  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) ) | 
						
							| 19 | 15 18 | elab | ⊢ ( 𝑤  ∈  { 𝑝  ∣  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑝  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) }  ↔  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑤  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) | 
						
							| 20 | 13 14 19 | 3bitr4g | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( 𝑤  ∈  ( 𝑁  WSPathsN  𝐺 )  ↔  𝑤  ∈  { 𝑝  ∣  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑝  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) } ) ) | 
						
							| 21 | 20 | eqrdv | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( 𝑁  WSPathsN  𝐺 )  =  { 𝑝  ∣  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑝  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) } ) | 
						
							| 22 |  | dfiunv2 | ⊢ ∪  𝑥  ∈  𝑉 ∪  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 )  =  { 𝑝  ∣  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) 𝑝  ∈  ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) } | 
						
							| 23 | 21 22 | eqtr4di | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐺  ∈  𝑈 )  →  ( 𝑁  WSPathsN  𝐺 )  =  ∪  𝑥  ∈  𝑉 ∪  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ( 𝑥 ( 𝑁  WSPathsNOn  𝐺 ) 𝑦 ) ) |