| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpmapen.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
xpmapen.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
xpmapen.3 |
⊢ 𝐶 ∈ V |
| 4 |
|
xpmapenlem.4 |
⊢ 𝐷 = ( 𝑧 ∈ 𝐶 ↦ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 5 |
|
xpmapenlem.5 |
⊢ 𝑅 = ( 𝑧 ∈ 𝐶 ↦ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 6 |
|
xpmapenlem.6 |
⊢ 𝑆 = ( 𝑧 ∈ 𝐶 ↦ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 7 |
|
ovex |
⊢ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∈ V |
| 8 |
|
ovex |
⊢ ( 𝐴 ↑m 𝐶 ) ∈ V |
| 9 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐶 ) ∈ V |
| 10 |
8 9
|
xpex |
⊢ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∈ V |
| 11 |
1 2
|
xpex |
⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 12 |
11 3
|
elmap |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 13 |
|
ffvelcdm |
⊢ ( ( 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
| 14 |
12 13
|
sylanb |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
| 15 |
|
xp1st |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐴 ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐴 ) |
| 17 |
16 4
|
fmptd |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 : 𝐶 ⟶ 𝐴 ) |
| 18 |
1 3
|
elmap |
⊢ ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ↔ 𝐷 : 𝐶 ⟶ 𝐴 ) |
| 19 |
17 18
|
sylibr |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ) |
| 20 |
|
xp2nd |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 21 |
14 20
|
syl |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 22 |
21 5
|
fmptd |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 : 𝐶 ⟶ 𝐵 ) |
| 23 |
2 3
|
elmap |
⊢ ( 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ↔ 𝑅 : 𝐶 ⟶ 𝐵 ) |
| 24 |
22 23
|
sylibr |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) |
| 25 |
19 24
|
opelxpd |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 〈 𝐷 , 𝑅 〉 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) |
| 26 |
|
xp1st |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐶 ) ) |
| 27 |
1 3
|
elmap |
⊢ ( ( 1st ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐶 ) ↔ ( 1st ‘ 𝑦 ) : 𝐶 ⟶ 𝐴 ) |
| 28 |
26 27
|
sylib |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) : 𝐶 ⟶ 𝐴 ) |
| 29 |
28
|
ffvelcdmda |
⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐴 ) |
| 30 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 𝐵 ↑m 𝐶 ) ) |
| 31 |
2 3
|
elmap |
⊢ ( ( 2nd ‘ 𝑦 ) ∈ ( 𝐵 ↑m 𝐶 ) ↔ ( 2nd ‘ 𝑦 ) : 𝐶 ⟶ 𝐵 ) |
| 32 |
30 31
|
sylib |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) : 𝐶 ⟶ 𝐵 ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐵 ) |
| 34 |
29 33
|
opelxpd |
⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 35 |
34 6
|
fmptd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 36 |
11 3
|
elmap |
⊢ ( 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 37 |
35 36
|
sylibr |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ) |
| 38 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 39 |
38
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 40 |
28
|
feqmptd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 41 |
40
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 42 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑥 = 𝑆 ) |
| 43 |
42
|
fveq1d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = ( 𝑆 ‘ 𝑧 ) ) |
| 44 |
|
opex |
⊢ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ V |
| 45 |
6
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ V ) → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 46 |
44 45
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐶 → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 47 |
46
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 48 |
43 47
|
eqtrd |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 49 |
48
|
fveq2d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) = ( 1st ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) ) |
| 50 |
|
fvex |
⊢ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ∈ V |
| 51 |
|
fvex |
⊢ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ∈ V |
| 52 |
50 51
|
op1st |
⊢ ( 1st ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) |
| 53 |
49 52
|
eqtrdi |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) |
| 54 |
53
|
mpteq2dva |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧 ∈ 𝐶 ↦ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 55 |
4 54
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝐷 = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 56 |
41 55
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st ‘ 𝑦 ) = 𝐷 ) |
| 57 |
32
|
feqmptd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 58 |
57
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 59 |
48
|
fveq2d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) = ( 2nd ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) ) |
| 60 |
50 51
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) |
| 61 |
59 60
|
eqtrdi |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) = ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) |
| 62 |
61
|
mpteq2dva |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧 ∈ 𝐶 ↦ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 63 |
5 62
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑅 = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 64 |
58 63
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd ‘ 𝑦 ) = 𝑅 ) |
| 65 |
56 64
|
opeq12d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 = 〈 𝐷 , 𝑅 〉 ) |
| 66 |
39 65
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = 〈 𝐷 , 𝑅 〉 ) |
| 67 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ) |
| 68 |
67 12
|
sylib |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 69 |
68
|
feqmptd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 70 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑦 = 〈 𝐷 , 𝑅 〉 ) |
| 71 |
70
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 𝑦 ) = ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) ) |
| 72 |
19
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ) |
| 73 |
24
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) |
| 74 |
|
op1stg |
⊢ ( ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) = 𝐷 ) |
| 75 |
72 73 74
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) = 𝐷 ) |
| 76 |
71 75
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 𝑦 ) = 𝐷 ) |
| 77 |
76
|
fveq1d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝐷 ‘ 𝑧 ) ) |
| 78 |
|
fvex |
⊢ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V |
| 79 |
4
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V ) → ( 𝐷 ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 80 |
78 79
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐶 → ( 𝐷 ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 81 |
77 80
|
sylan9eq |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 82 |
70
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) ) |
| 83 |
|
op2ndg |
⊢ ( ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) = 𝑅 ) |
| 84 |
72 73 83
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) = 𝑅 ) |
| 85 |
82 84
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 𝑦 ) = 𝑅 ) |
| 86 |
85
|
fveq1d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑅 ‘ 𝑧 ) ) |
| 87 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V |
| 88 |
5
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V ) → ( 𝑅 ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 89 |
87 88
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐶 → ( 𝑅 ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 90 |
86 89
|
sylan9eq |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 91 |
81 90
|
opeq12d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
| 92 |
68
|
ffvelcdmda |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
| 93 |
|
1st2nd2 |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
| 94 |
92 93
|
syl |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
| 95 |
91 94
|
eqtr4d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 = ( 𝑥 ‘ 𝑧 ) ) |
| 96 |
95
|
mpteq2dva |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 𝑧 ∈ 𝐶 ↦ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 97 |
6 96
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑆 = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 98 |
69 97
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 = 𝑆 ) |
| 99 |
66 98
|
impbida |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) → ( 𝑥 = 𝑆 ↔ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ) |
| 100 |
7 10 25 37 99
|
en3i |
⊢ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ≈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) |