Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem6 | Unicode version |
Description: Lemma for isfin3-2 8768. Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | |
isf32lem.b | |
isf32lem.c | |
isf32lem.d | |
isf32lem.e | |
isf32lem.f |
Ref | Expression |
---|---|
isf32lem6 |
S
,,,, ,J
,, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.f | . . . 4 | |
2 | 1 | fveq1i 5872 | . . 3 |
3 | isf32lem.d | . . . . . . . 8 | |
4 | ssrab2 3584 | . . . . . . . 8 | |
5 | 3, 4 | eqsstri 3533 | . . . . . . 7 |
6 | isf32lem.a | . . . . . . . 8 | |
7 | isf32lem.b | . . . . . . . 8 | |
8 | isf32lem.c | . . . . . . . 8 | |
9 | 6, 7, 8, 3 | isf32lem5 8758 | . . . . . . 7 |
10 | isf32lem.e | . . . . . . . 8 | |
11 | 10 | fin23lem22 8728 | . . . . . . 7 |
12 | 5, 9, 11 | sylancr 663 | . . . . . 6 |
13 | f1of 5821 | . . . . . 6 | |
14 | 12, 13 | syl 16 | . . . . 5 |
15 | fvco3 5950 | . . . . 5 | |
16 | 14, 15 | sylan 471 | . . . 4 |
17 | 9 | adantr 465 | . . . . . . . 8 |
18 | 5, 17, 11 | sylancr 663 | . . . . . . 7 |
19 | 18, 13 | syl 16 | . . . . . 6 |
20 | ffvelrn 6029 | . . . . . 6 | |
21 | 19, 20 | sylancom 667 | . . . . 5 |
22 | fveq2 5871 | . . . . . . 7 | |
23 | suceq 4948 | . . . . . . . 8 | |
24 | 23 | fveq2d 5875 | . . . . . . 7 |
25 | 22, 24 | difeq12d 3622 | . . . . . 6 |
26 | eqid 2457 | . . . . . 6 | |
27 | fvex 5881 | . . . . . . 7 | |
28 | difexg 4600 | . . . . . . 7 | |
29 | 27, 28 | ax-mp 5 | . . . . . 6 |
30 | 25, 26, 29 | fvmpt 5956 | . . . . 5 |
31 | 21, 30 | syl 16 | . . . 4 |
32 | 16, 31 | eqtrd 2498 | . . 3 |
33 | 2, 32 | syl5eq 2510 | . 2 |
34 | suceq 4948 | . . . . . . . . 9 | |
35 | 34 | fveq2d 5875 | . . . . . . . 8 |
36 | fveq2 5871 | . . . . . . . 8 | |
37 | 35, 36 | psseq12d 3597 | . . . . . . 7 |
38 | 37, 3 | elrab2 3259 | . . . . . 6 |
39 | 38 | simprbi 464 | . . . . 5 |
40 | 21, 39 | syl 16 | . . . 4 |
41 | df-pss 3491 | . . . 4 | |
42 | 40, 41 | sylib 196 | . . 3 |
43 | pssdifn0 3888 | . . 3 | |
44 | 42, 43 | syl 16 | . 2 |
45 | 33, 44 | eqnetrd 2750 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 { crab 2811
cvv 3109
\ cdif 3472 i^i cin 3474 C_ wss 3475
C. wpss 3476 c0 3784 ~P cpw 4012 |^| cint 4286
class class class wbr 4452 e. cmpt 4510
suc csuc 4885
ran crn 5005 o. ccom 5008 --> wf 5589
-1-1-onto-> wf1o 5592
` cfv 5593 iota_ crio 6256 com 6700
cen 7533 cfn 7536 |
This theorem is referenced by: isf32lem9 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 |
Copyright terms: Public domain | W3C validator |