| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqreunnltlem |
|- ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) |
| 2 |
1
|
ex |
|- ( P e. Prime -> ( ( P mod 4 ) = 1 -> E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) |
| 3 |
|
2reu2rex |
|- ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. NN E. b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) |
| 4 |
|
eqeq2 |
|- ( P = 2 -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P <-> ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 ) ) |
| 5 |
4
|
adantr |
|- ( ( P = 2 /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P <-> ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 ) ) |
| 6 |
|
nnnn0 |
|- ( a e. NN -> a e. NN0 ) |
| 7 |
|
nnnn0 |
|- ( b e. NN -> b e. NN0 ) |
| 8 |
|
2sq2 |
|- ( ( a e. NN0 /\ b e. NN0 ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 <-> ( a = 1 /\ b = 1 ) ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( a e. NN /\ b e. NN ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 <-> ( a = 1 /\ b = 1 ) ) ) |
| 10 |
|
breq12 |
|- ( ( a = 1 /\ b = 1 ) -> ( a < b <-> 1 < 1 ) ) |
| 11 |
|
1re |
|- 1 e. RR |
| 12 |
11
|
ltnri |
|- -. 1 < 1 |
| 13 |
12
|
pm2.21i |
|- ( 1 < 1 -> ( P mod 4 ) = 1 ) |
| 14 |
10 13
|
biimtrdi |
|- ( ( a = 1 /\ b = 1 ) -> ( a < b -> ( P mod 4 ) = 1 ) ) |
| 15 |
9 14
|
biimtrdi |
|- ( ( a e. NN /\ b e. NN ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 -> ( a < b -> ( P mod 4 ) = 1 ) ) ) |
| 16 |
15
|
adantl |
|- ( ( P = 2 /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 -> ( a < b -> ( P mod 4 ) = 1 ) ) ) |
| 17 |
5 16
|
sylbid |
|- ( ( P = 2 /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P -> ( a < b -> ( P mod 4 ) = 1 ) ) ) |
| 18 |
17
|
impcomd |
|- ( ( P = 2 /\ ( a e. NN /\ b e. NN ) ) -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) |
| 19 |
18
|
rexlimdvva |
|- ( P = 2 -> ( E. a e. NN E. b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) |
| 20 |
3 19
|
syl5 |
|- ( P = 2 -> ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) |
| 21 |
20
|
a1d |
|- ( P = 2 -> ( P e. Prime -> ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) ) |
| 22 |
|
nnssz |
|- NN C_ ZZ |
| 23 |
|
id |
|- ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) |
| 24 |
23
|
eqcomd |
|- ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P -> P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 25 |
24
|
adantl |
|- ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 26 |
25
|
reximi |
|- ( E. b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. b e. NN P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 27 |
26
|
reximi |
|- ( E. a e. NN E. b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. NN E. b e. NN P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 28 |
|
ssrexv |
|- ( NN C_ ZZ -> ( E. b e. NN P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) ) |
| 29 |
22 28
|
ax-mp |
|- ( E. b e. NN P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 30 |
29
|
reximi |
|- ( E. a e. NN E. b e. NN P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. a e. NN E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 31 |
3 27 30
|
3syl |
|- ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. NN E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 32 |
|
ssrexv |
|- ( NN C_ ZZ -> ( E. a e. NN E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) ) |
| 33 |
22 31 32
|
mpsyl |
|- ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 34 |
33
|
adantl |
|- ( ( P e. Prime /\ E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) |
| 35 |
|
2sqb |
|- ( P e. Prime -> ( E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) <-> ( P = 2 \/ ( P mod 4 ) = 1 ) ) ) |
| 36 |
35
|
adantr |
|- ( ( P e. Prime /\ E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> ( E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) <-> ( P = 2 \/ ( P mod 4 ) = 1 ) ) ) |
| 37 |
34 36
|
mpbid |
|- ( ( P e. Prime /\ E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> ( P = 2 \/ ( P mod 4 ) = 1 ) ) |
| 38 |
37
|
ord |
|- ( ( P e. Prime /\ E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> ( -. P = 2 -> ( P mod 4 ) = 1 ) ) |
| 39 |
38
|
expcom |
|- ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P e. Prime -> ( -. P = 2 -> ( P mod 4 ) = 1 ) ) ) |
| 40 |
39
|
com13 |
|- ( -. P = 2 -> ( P e. Prime -> ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) ) |
| 41 |
21 40
|
pm2.61i |
|- ( P e. Prime -> ( E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) |
| 42 |
2 41
|
impbid |
|- ( P e. Prime -> ( ( P mod 4 ) = 1 <-> E! a e. NN E! b e. NN ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) |