Metamath Proof Explorer


Theorem 4atlem10

Description: Lemma for 4at . Combine both possible cases. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l
|- .<_ = ( le ` K )
4at.j
|- .\/ = ( join ` K )
4at.a
|- A = ( Atoms ` K )
Assertion 4atlem10
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )

Proof

Step Hyp Ref Expression
1 4at.l
 |-  .<_ = ( le ` K )
2 4at.j
 |-  .\/ = ( join ` K )
3 4at.a
 |-  A = ( Atoms ` K )
4 simp11
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL )
5 4 hllatd
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat )
6 simp21l
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A )
7 eqid
 |-  ( Base ` K ) = ( Base ` K )
8 7 3 atbase
 |-  ( R e. A -> R e. ( Base ` K ) )
9 6 8 syl
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) )
10 simp21r
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A )
11 7 3 atbase
 |-  ( S e. A -> S e. ( Base ` K ) )
12 10 11 syl
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) )
13 7 2 3 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )
14 13 3ad2ant1
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )
15 simp22
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. A )
16 simp23
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> W e. A )
17 7 2 3 hlatjcl
 |-  ( ( K e. HL /\ V e. A /\ W e. A ) -> ( V .\/ W ) e. ( Base ` K ) )
18 4 15 16 17 syl3anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V .\/ W ) e. ( Base ` K ) )
19 7 2 latjcl
 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( V .\/ W ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ ( V .\/ W ) ) e. ( Base ` K ) )
20 5 14 18 19 syl3anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( V .\/ W ) ) e. ( Base ` K ) )
21 7 1 2 latjle12
 |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )
22 5 9 12 20 21 syl13anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )
23 simp11
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) )
24 6 10 15 3jca
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A /\ V e. A ) )
25 24 3ad2ant1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( R e. A /\ S e. A /\ V e. A ) )
26 16 3ad2ant1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> W e. A )
27 simp2
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ W ) )
28 simp33
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) )
29 28 3ad2ant1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) )
30 26 27 29 3jca
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( W e. A /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) )
31 simp3
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )
32 1 2 3 4atlem10b
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ V e. A ) /\ ( W e. A /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) )
33 23 25 30 31 32 syl31anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) )
34 33 3exp
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ Q ) .\/ W ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) )
35 2 3 hlatjcom
 |-  ( ( K e. HL /\ S e. A /\ R e. A ) -> ( S .\/ R ) = ( R .\/ S ) )
36 4 10 6 35 syl3anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S .\/ R ) = ( R .\/ S ) )
37 36 oveq2d
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) )
38 37 3ad2ant1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) )
39 simp11
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) )
40 10 6 15 3jca
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S e. A /\ R e. A /\ V e. A ) )
41 40 3ad2ant1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( S e. A /\ R e. A /\ V e. A ) )
42 16 3ad2ant1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> W e. A )
43 simp2
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ W ) )
44 simp12
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A )
45 simp13
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A )
46 44 45 jca
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P e. A /\ Q e. A ) )
47 simp21
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A ) )
48 simp32
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( P .\/ Q ) )
49 1 2 3 4atlem0a
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ S ) )
50 4 46 47 48 28 49 syl32anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ S ) )
51 50 3ad2ant1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ S ) )
52 42 43 51 3jca
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( W e. A /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ -. R .<_ ( ( P .\/ Q ) .\/ S ) ) )
53 simprr
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) )
54 simprl
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) )
55 53 54 jca
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )
56 55 3adant2
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )
57 1 2 3 4atlem10b
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ R e. A /\ V e. A ) /\ ( W e. A /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ -. R .<_ ( ( P .\/ Q ) .\/ S ) ) ) /\ ( S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) )
58 39 41 52 56 57 syl31anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) )
59 38 58 eqtr3d
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) )
60 59 3exp
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. S .<_ ( ( P .\/ Q ) .\/ W ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) )
61 simp1
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) )
62 simp3
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) )
63 1 2 3 4atlem3b
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ Q ) .\/ W ) \/ -. S .<_ ( ( P .\/ Q ) .\/ W ) ) )
64 61 6 10 16 62 63 syl131anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ Q ) .\/ W ) \/ -. S .<_ ( ( P .\/ Q ) .\/ W ) ) )
65 34 60 64 mpjaod
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )
66 22 65 sylbird
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) )