| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcgra2.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | dfcgra2.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | dfcgra2.m |  |-  .- = ( dist ` G ) | 
						
							| 4 |  | dfcgra2.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | dfcgra2.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | dfcgra2.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | dfcgra2.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | dfcgra2.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | dfcgra2.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | dfcgra2.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | acopy.l |  |-  L = ( LineG ` G ) | 
						
							| 12 |  | acopy.1 |  |-  ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 13 |  | acopy.2 |  |-  ( ph -> -. ( D e. ( E L F ) \/ E = F ) ) | 
						
							| 14 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 15 | 4 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> G e. TarskiG ) | 
						
							| 16 | 5 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> A e. P ) | 
						
							| 17 | 6 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> B e. P ) | 
						
							| 18 | 7 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> C e. P ) | 
						
							| 19 |  | simplr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. P ) | 
						
							| 20 | 9 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. P ) | 
						
							| 21 | 10 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> F e. P ) | 
						
							| 22 | 12 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 23 | 8 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> D e. P ) | 
						
							| 24 | 13 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( D e. ( E L F ) \/ E = F ) ) | 
						
							| 25 |  | simprl |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d ( ( hlG ` G ) ` E ) D ) | 
						
							| 26 | 1 2 14 19 23 20 15 11 25 | hlln |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. ( D L E ) ) | 
						
							| 27 | 1 2 14 19 23 20 15 25 | hlne1 |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d =/= E ) | 
						
							| 28 | 1 2 11 15 23 20 21 19 24 26 27 | ncolncol |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( d e. ( E L F ) \/ E = F ) ) | 
						
							| 29 |  | simprr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( E .- d ) = ( B .- A ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( B .- A ) = ( E .- d ) ) | 
						
							| 31 | 1 3 2 15 17 16 20 19 30 | tgcgrcomlr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( A .- B ) = ( d .- E ) ) | 
						
							| 32 | 1 3 2 11 14 15 16 17 18 19 20 21 22 28 31 | trgcopy |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. f e. P ( <" A B C "> ( cgrG ` G ) <" d E f "> /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) ) | 
						
							| 33 | 15 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> G e. TarskiG ) | 
						
							| 34 | 16 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> A e. P ) | 
						
							| 35 | 17 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> B e. P ) | 
						
							| 36 | 18 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> C e. P ) | 
						
							| 37 | 19 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> d e. P ) | 
						
							| 38 | 20 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> E e. P ) | 
						
							| 39 |  | simplr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> f e. P ) | 
						
							| 40 | 1 2 11 4 5 6 7 12 | ncolne1 |  |-  ( ph -> A =/= B ) | 
						
							| 41 | 40 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> A =/= B ) | 
						
							| 42 | 1 11 2 4 6 7 5 12 | ncolrot1 |  |-  ( ph -> -. ( B e. ( C L A ) \/ C = A ) ) | 
						
							| 43 | 1 2 11 4 6 7 5 42 | ncolne1 |  |-  ( ph -> B =/= C ) | 
						
							| 44 | 43 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> B =/= C ) | 
						
							| 45 |  | simpr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> <" A B C "> ( cgrG ` G ) <" d E f "> ) | 
						
							| 46 | 1 2 33 14 34 35 36 37 38 39 41 44 45 | cgrcgra |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> <" A B C "> ( cgrA ` G ) <" d E f "> ) | 
						
							| 47 | 23 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> D e. P ) | 
						
							| 48 | 25 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> d ( ( hlG ` G ) ` E ) D ) | 
						
							| 49 | 1 2 14 37 47 38 33 48 | hlcomd |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> D ( ( hlG ` G ) ` E ) d ) | 
						
							| 50 | 1 2 14 33 34 35 36 37 38 39 46 47 49 | cgrahl1 |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> <" A B C "> ( cgrA ` G ) <" D E f "> ) | 
						
							| 51 | 50 | ex |  |-  ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) -> ( <" A B C "> ( cgrG ` G ) <" d E f "> -> <" A B C "> ( cgrA ` G ) <" D E f "> ) ) | 
						
							| 52 |  | simpr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> f ( ( hpG ` G ) ` ( d L E ) ) F ) | 
						
							| 53 | 15 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> G e. TarskiG ) | 
						
							| 54 | 19 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> d e. P ) | 
						
							| 55 | 20 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> E e. P ) | 
						
							| 56 | 27 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> d =/= E ) | 
						
							| 57 | 1 2 11 4 8 9 10 13 | ncolne1 |  |-  ( ph -> D =/= E ) | 
						
							| 58 | 1 2 11 4 8 9 57 | tgelrnln |  |-  ( ph -> ( D L E ) e. ran L ) | 
						
							| 59 | 58 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( D L E ) e. ran L ) | 
						
							| 60 | 26 | ad2antrr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> d e. ( D L E ) ) | 
						
							| 61 | 1 2 11 4 8 9 57 | tglinerflx2 |  |-  ( ph -> E e. ( D L E ) ) | 
						
							| 62 | 61 | ad4antr |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> E e. ( D L E ) ) | 
						
							| 63 | 1 2 11 53 54 55 56 56 59 60 62 | tglinethru |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( D L E ) = ( d L E ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( ( hpG ` G ) ` ( D L E ) ) = ( ( hpG ` G ) ` ( d L E ) ) ) | 
						
							| 65 | 64 | breqd |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( f ( ( hpG ` G ) ` ( D L E ) ) F <-> f ( ( hpG ` G ) ` ( d L E ) ) F ) ) | 
						
							| 66 | 52 65 | mpbird |  |-  ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> f ( ( hpG ` G ) ` ( D L E ) ) F ) | 
						
							| 67 | 66 | ex |  |-  ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) -> ( f ( ( hpG ` G ) ` ( d L E ) ) F -> f ( ( hpG ` G ) ` ( D L E ) ) F ) ) | 
						
							| 68 | 51 67 | anim12d |  |-  ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) -> ( ( <" A B C "> ( cgrG ` G ) <" d E f "> /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) ) | 
						
							| 69 | 68 | reximdva |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( E. f e. P ( <" A B C "> ( cgrG ` G ) <" d E f "> /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> E. f e. P ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) ) | 
						
							| 70 | 32 69 | mpd |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. f e. P ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) | 
						
							| 71 | 40 | necomd |  |-  ( ph -> B =/= A ) | 
						
							| 72 | 1 2 14 9 6 5 4 8 3 57 71 | hlcgrex |  |-  ( ph -> E. d e. P ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) | 
						
							| 73 | 70 72 | r19.29a |  |-  ( ph -> E. f e. P ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |