Step |
Hyp |
Ref |
Expression |
1 |
|
dfcgra2.p |
|- P = ( Base ` G ) |
2 |
|
dfcgra2.i |
|- I = ( Itv ` G ) |
3 |
|
dfcgra2.m |
|- .- = ( dist ` G ) |
4 |
|
dfcgra2.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
dfcgra2.a |
|- ( ph -> A e. P ) |
6 |
|
dfcgra2.b |
|- ( ph -> B e. P ) |
7 |
|
dfcgra2.c |
|- ( ph -> C e. P ) |
8 |
|
dfcgra2.d |
|- ( ph -> D e. P ) |
9 |
|
dfcgra2.e |
|- ( ph -> E e. P ) |
10 |
|
dfcgra2.f |
|- ( ph -> F e. P ) |
11 |
|
acopy.l |
|- L = ( LineG ` G ) |
12 |
|
acopy.1 |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
13 |
|
acopy.2 |
|- ( ph -> -. ( D e. ( E L F ) \/ E = F ) ) |
14 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
15 |
4
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> G e. TarskiG ) |
16 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> A e. P ) |
17 |
6
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> B e. P ) |
18 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> C e. P ) |
19 |
|
simplr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. P ) |
20 |
9
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. P ) |
21 |
10
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> F e. P ) |
22 |
12
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) |
23 |
8
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> D e. P ) |
24 |
13
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( D e. ( E L F ) \/ E = F ) ) |
25 |
|
simprl |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d ( ( hlG ` G ) ` E ) D ) |
26 |
1 2 14 19 23 20 15 11 25
|
hlln |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. ( D L E ) ) |
27 |
1 2 14 19 23 20 15 25
|
hlne1 |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d =/= E ) |
28 |
1 2 11 15 23 20 21 19 24 26 27
|
ncolncol |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( d e. ( E L F ) \/ E = F ) ) |
29 |
|
simprr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( E .- d ) = ( B .- A ) ) |
30 |
29
|
eqcomd |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( B .- A ) = ( E .- d ) ) |
31 |
1 3 2 15 17 16 20 19 30
|
tgcgrcomlr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( A .- B ) = ( d .- E ) ) |
32 |
1 3 2 11 14 15 16 17 18 19 20 21 22 28 31
|
trgcopy |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. f e. P ( <" A B C "> ( cgrG ` G ) <" d E f "> /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) ) |
33 |
15
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> G e. TarskiG ) |
34 |
16
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> A e. P ) |
35 |
17
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> B e. P ) |
36 |
18
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> C e. P ) |
37 |
19
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> d e. P ) |
38 |
20
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> E e. P ) |
39 |
|
simplr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> f e. P ) |
40 |
1 2 11 4 5 6 7 12
|
ncolne1 |
|- ( ph -> A =/= B ) |
41 |
40
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> A =/= B ) |
42 |
1 11 2 4 6 7 5 12
|
ncolrot1 |
|- ( ph -> -. ( B e. ( C L A ) \/ C = A ) ) |
43 |
1 2 11 4 6 7 5 42
|
ncolne1 |
|- ( ph -> B =/= C ) |
44 |
43
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> B =/= C ) |
45 |
|
simpr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> <" A B C "> ( cgrG ` G ) <" d E f "> ) |
46 |
1 2 33 14 34 35 36 37 38 39 41 44 45
|
cgrcgra |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> <" A B C "> ( cgrA ` G ) <" d E f "> ) |
47 |
23
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> D e. P ) |
48 |
25
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> d ( ( hlG ` G ) ` E ) D ) |
49 |
1 2 14 37 47 38 33 48
|
hlcomd |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> D ( ( hlG ` G ) ` E ) d ) |
50 |
1 2 14 33 34 35 36 37 38 39 46 47 49
|
cgrahl1 |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ <" A B C "> ( cgrG ` G ) <" d E f "> ) -> <" A B C "> ( cgrA ` G ) <" D E f "> ) |
51 |
50
|
ex |
|- ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) -> ( <" A B C "> ( cgrG ` G ) <" d E f "> -> <" A B C "> ( cgrA ` G ) <" D E f "> ) ) |
52 |
|
simpr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> f ( ( hpG ` G ) ` ( d L E ) ) F ) |
53 |
15
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> G e. TarskiG ) |
54 |
19
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> d e. P ) |
55 |
20
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> E e. P ) |
56 |
27
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> d =/= E ) |
57 |
1 2 11 4 8 9 10 13
|
ncolne1 |
|- ( ph -> D =/= E ) |
58 |
1 2 11 4 8 9 57
|
tgelrnln |
|- ( ph -> ( D L E ) e. ran L ) |
59 |
58
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( D L E ) e. ran L ) |
60 |
26
|
ad2antrr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> d e. ( D L E ) ) |
61 |
1 2 11 4 8 9 57
|
tglinerflx2 |
|- ( ph -> E e. ( D L E ) ) |
62 |
61
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> E e. ( D L E ) ) |
63 |
1 2 11 53 54 55 56 56 59 60 62
|
tglinethru |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( D L E ) = ( d L E ) ) |
64 |
63
|
fveq2d |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( ( hpG ` G ) ` ( D L E ) ) = ( ( hpG ` G ) ` ( d L E ) ) ) |
65 |
64
|
breqd |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( f ( ( hpG ` G ) ` ( D L E ) ) F <-> f ( ( hpG ` G ) ` ( d L E ) ) F ) ) |
66 |
52 65
|
mpbird |
|- ( ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> f ( ( hpG ` G ) ` ( D L E ) ) F ) |
67 |
66
|
ex |
|- ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) -> ( f ( ( hpG ` G ) ` ( d L E ) ) F -> f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |
68 |
51 67
|
anim12d |
|- ( ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ f e. P ) -> ( ( <" A B C "> ( cgrG ` G ) <" d E f "> /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) ) |
69 |
68
|
reximdva |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( E. f e. P ( <" A B C "> ( cgrG ` G ) <" d E f "> /\ f ( ( hpG ` G ) ` ( d L E ) ) F ) -> E. f e. P ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) ) |
70 |
32 69
|
mpd |
|- ( ( ( ph /\ d e. P ) /\ ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. f e. P ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |
71 |
40
|
necomd |
|- ( ph -> B =/= A ) |
72 |
1 2 14 9 6 5 4 8 3 57 71
|
hlcgrex |
|- ( ph -> E. d e. P ( d ( ( hlG ` G ) ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) |
73 |
70 72
|
r19.29a |
|- ( ph -> E. f e. P ( <" A B C "> ( cgrA ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |