Step |
Hyp |
Ref |
Expression |
1 |
|
caucvgr.1 |
|- ( ph -> A C_ RR ) |
2 |
|
caucvgr.2 |
|- ( ph -> F : A --> CC ) |
3 |
|
caucvgr.3 |
|- ( ph -> sup ( A , RR* , < ) = +oo ) |
4 |
|
caucvgr.4 |
|- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
5 |
|
caucvgrlem2.5 |
|- H : CC --> RR |
6 |
|
caucvgrlem2.6 |
|- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
7 |
|
fcompt |
|- ( ( H : CC --> RR /\ F : A --> CC ) -> ( H o. F ) = ( n e. A |-> ( H ` ( F ` n ) ) ) ) |
8 |
5 2 7
|
sylancr |
|- ( ph -> ( H o. F ) = ( n e. A |-> ( H ` ( F ` n ) ) ) ) |
9 |
|
fco |
|- ( ( H : CC --> RR /\ F : A --> CC ) -> ( H o. F ) : A --> RR ) |
10 |
5 2 9
|
sylancr |
|- ( ph -> ( H o. F ) : A --> RR ) |
11 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> F : A --> CC ) |
12 |
|
simprr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> k e. A ) |
13 |
11 12
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( F ` k ) e. CC ) |
14 |
|
simprl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> j e. A ) |
15 |
11 14
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( F ` j ) e. CC ) |
16 |
13 15 6
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
17 |
5
|
ffvelrni |
|- ( ( F ` k ) e. CC -> ( H ` ( F ` k ) ) e. RR ) |
18 |
13 17
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( H ` ( F ` k ) ) e. RR ) |
19 |
5
|
ffvelrni |
|- ( ( F ` j ) e. CC -> ( H ` ( F ` j ) ) e. RR ) |
20 |
15 19
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( H ` ( F ` j ) ) e. RR ) |
21 |
18 20
|
resubcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) e. RR ) |
22 |
21
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) e. CC ) |
23 |
22
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) e. RR ) |
24 |
13 15
|
subcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( F ` k ) - ( F ` j ) ) e. CC ) |
25 |
24
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR ) |
26 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
27 |
26
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> x e. RR ) |
28 |
|
lelttr |
|- ( ( ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
29 |
23 25 27 28
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
30 |
16 29
|
mpand |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
31 |
|
fvco3 |
|- ( ( F : A --> CC /\ k e. A ) -> ( ( H o. F ) ` k ) = ( H ` ( F ` k ) ) ) |
32 |
11 12 31
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H o. F ) ` k ) = ( H ` ( F ` k ) ) ) |
33 |
|
fvco3 |
|- ( ( F : A --> CC /\ j e. A ) -> ( ( H o. F ) ` j ) = ( H ` ( F ` j ) ) ) |
34 |
11 14 33
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H o. F ) ` j ) = ( H ` ( F ` j ) ) ) |
35 |
32 34
|
oveq12d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) = ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) |
36 |
35
|
fveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) = ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) ) |
37 |
36
|
breq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x <-> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
38 |
30 37
|
sylibrd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) |
39 |
38
|
imim2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
40 |
39
|
anassrs |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. A ) /\ k e. A ) -> ( ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
41 |
40
|
ralimdva |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. A ) -> ( A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
42 |
41
|
reximdva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
43 |
42
|
ralimdva |
|- ( ph -> ( A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
44 |
4 43
|
mpd |
|- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) |
45 |
1 10 3 44
|
caurcvgr |
|- ( ph -> ( H o. F ) ~~>r ( limsup ` ( H o. F ) ) ) |
46 |
|
rlimrel |
|- Rel ~~>r |
47 |
46
|
releldmi |
|- ( ( H o. F ) ~~>r ( limsup ` ( H o. F ) ) -> ( H o. F ) e. dom ~~>r ) |
48 |
45 47
|
syl |
|- ( ph -> ( H o. F ) e. dom ~~>r ) |
49 |
|
ax-resscn |
|- RR C_ CC |
50 |
|
fss |
|- ( ( ( H o. F ) : A --> RR /\ RR C_ CC ) -> ( H o. F ) : A --> CC ) |
51 |
10 49 50
|
sylancl |
|- ( ph -> ( H o. F ) : A --> CC ) |
52 |
51 3
|
rlimdm |
|- ( ph -> ( ( H o. F ) e. dom ~~>r <-> ( H o. F ) ~~>r ( ~~>r ` ( H o. F ) ) ) ) |
53 |
48 52
|
mpbid |
|- ( ph -> ( H o. F ) ~~>r ( ~~>r ` ( H o. F ) ) ) |
54 |
8 53
|
eqbrtrrd |
|- ( ph -> ( n e. A |-> ( H ` ( F ` n ) ) ) ~~>r ( ~~>r ` ( H o. F ) ) ) |