Metamath Proof Explorer


Theorem cbvproddavw

Description: Change bound variable in a product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvproddavw.1
|- ( ( ph /\ j = k ) -> B = C )
Assertion cbvproddavw
|- ( ph -> prod_ j e. A B = prod_ k e. A C )

Proof

Step Hyp Ref Expression
1 cbvproddavw.1
 |-  ( ( ph /\ j = k ) -> B = C )
2 eleq1w
 |-  ( j = k -> ( j e. A <-> k e. A ) )
3 2 adantl
 |-  ( ( ph /\ j = k ) -> ( j e. A <-> k e. A ) )
4 3 1 ifbieq1d
 |-  ( ( ph /\ j = k ) -> if ( j e. A , B , 1 ) = if ( k e. A , C , 1 ) )
5 4 cbvmptdavw
 |-  ( ph -> ( j e. ZZ |-> if ( j e. A , B , 1 ) ) = ( k e. ZZ |-> if ( k e. A , C , 1 ) ) )
6 5 seqeq3d
 |-  ( ph -> seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) = seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) )
7 6 breq1d
 |-  ( ph -> ( seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y <-> seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) )
8 7 anbi2d
 |-  ( ph -> ( ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) <-> ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) )
9 8 exbidv
 |-  ( ph -> ( E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) <-> E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) )
10 9 rexbidv
 |-  ( ph -> ( E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) <-> E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) )
11 5 seqeq3d
 |-  ( ph -> seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) = seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) )
12 11 breq1d
 |-  ( ph -> ( seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x <-> seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) )
13 10 12 3anbi23d
 |-  ( ph -> ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) )
14 13 rexbidv
 |-  ( ph -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) )
15 1 cbvcsbdavw
 |-  ( ph -> [_ ( f ` n ) / j ]_ B = [_ ( f ` n ) / k ]_ C )
16 15 mpteq2dv
 |-  ( ph -> ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) = ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) )
17 16 seqeq3d
 |-  ( ph -> seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) = seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) )
18 17 fveq1d
 |-  ( ph -> ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) )
19 18 eqeq2d
 |-  ( ph -> ( x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) <-> x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) )
20 19 anbi2d
 |-  ( ph -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
21 20 exbidv
 |-  ( ph -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
22 21 rexbidv
 |-  ( ph -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
23 14 22 orbi12d
 |-  ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) )
24 23 iotabidv
 |-  ( ph -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) )
25 df-prod
 |-  prod_ j e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) ) )
26 df-prod
 |-  prod_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
27 24 25 26 3eqtr4g
 |-  ( ph -> prod_ j e. A B = prod_ k e. A C )