Step |
Hyp |
Ref |
Expression |
1 |
|
cbvproddavw.1 |
|- ( ( ph /\ j = k ) -> B = C ) |
2 |
|
eleq1w |
|- ( j = k -> ( j e. A <-> k e. A ) ) |
3 |
2
|
adantl |
|- ( ( ph /\ j = k ) -> ( j e. A <-> k e. A ) ) |
4 |
3 1
|
ifbieq1d |
|- ( ( ph /\ j = k ) -> if ( j e. A , B , 1 ) = if ( k e. A , C , 1 ) ) |
5 |
4
|
cbvmptdavw |
|- ( ph -> ( j e. ZZ |-> if ( j e. A , B , 1 ) ) = ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) |
6 |
5
|
seqeq3d |
|- ( ph -> seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) = seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ) |
7 |
6
|
breq1d |
|- ( ph -> ( seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y <-> seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) |
8 |
7
|
anbi2d |
|- ( ph -> ( ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) <-> ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) |
9 |
8
|
exbidv |
|- ( ph -> ( E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) <-> E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) |
10 |
9
|
rexbidv |
|- ( ph -> ( E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) <-> E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) |
11 |
5
|
seqeq3d |
|- ( ph -> seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) = seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ) |
12 |
11
|
breq1d |
|- ( ph -> ( seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x <-> seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) |
13 |
10 12
|
3anbi23d |
|- ( ph -> ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) ) |
14 |
13
|
rexbidv |
|- ( ph -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) ) |
15 |
1
|
cbvcsbdavw |
|- ( ph -> [_ ( f ` n ) / j ]_ B = [_ ( f ` n ) / k ]_ C ) |
16 |
15
|
mpteq2dv |
|- ( ph -> ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) = ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) |
17 |
16
|
seqeq3d |
|- ( ph -> seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) = seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ) |
18 |
17
|
fveq1d |
|- ( ph -> ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) |
19 |
18
|
eqeq2d |
|- ( ph -> ( x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) <-> x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) |
20 |
19
|
anbi2d |
|- ( ph -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
21 |
20
|
exbidv |
|- ( ph -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
22 |
21
|
rexbidv |
|- ( ph -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
23 |
14 22
|
orbi12d |
|- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
24 |
23
|
iotabidv |
|- ( ph -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
25 |
|
df-prod |
|- prod_ j e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( j e. ZZ |-> if ( j e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / j ]_ B ) ) ` m ) ) ) ) |
26 |
|
df-prod |
|- prod_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
27 |
24 25 26
|
3eqtr4g |
|- ( ph -> prod_ j e. A B = prod_ k e. A C ) |