| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvproddavw.1 |
|
| 2 |
|
eleq1w |
|
| 3 |
2
|
adantl |
|
| 4 |
3 1
|
ifbieq1d |
|
| 5 |
4
|
cbvmptdavw |
|
| 6 |
5
|
seqeq3d |
|
| 7 |
6
|
breq1d |
|
| 8 |
7
|
anbi2d |
|
| 9 |
8
|
exbidv |
|
| 10 |
9
|
rexbidv |
|
| 11 |
5
|
seqeq3d |
|
| 12 |
11
|
breq1d |
|
| 13 |
10 12
|
3anbi23d |
|
| 14 |
13
|
rexbidv |
|
| 15 |
1
|
cbvcsbdavw |
|
| 16 |
15
|
mpteq2dv |
|
| 17 |
16
|
seqeq3d |
|
| 18 |
17
|
fveq1d |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
19
|
anbi2d |
|
| 21 |
20
|
exbidv |
|
| 22 |
21
|
rexbidv |
|
| 23 |
14 22
|
orbi12d |
|
| 24 |
23
|
iotabidv |
|
| 25 |
|
df-prod |
|
| 26 |
|
df-prod |
|
| 27 |
24 25 26
|
3eqtr4g |
|