| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme17.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme17.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme17.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme17.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme17.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme17.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme17.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme17.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 9 |
|
cdleme17.c |
|- C = ( ( P .\/ S ) ./\ W ) |
| 10 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 12 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> K e. HL ) |
| 13 |
12
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> K e. Lat ) |
| 14 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> S e. A ) |
| 15 |
11 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 16 |
14 15
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> S e. ( Base ` K ) ) |
| 17 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> P e. A ) |
| 18 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 19 |
12 17 14 18
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 20 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> Q e. A ) |
| 21 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 22 |
12 17 20 21
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 23 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> S .<_ ( P .\/ S ) ) |
| 24 |
12 17 14 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> S .<_ ( P .\/ S ) ) |
| 25 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> W e. H ) |
| 26 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> -. P .<_ W ) |
| 27 |
1 2 3 4 5 9
|
cdleme8 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ C ) = ( P .\/ S ) ) |
| 28 |
12 25 17 26 14 27
|
syl221anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> ( P .\/ C ) = ( P .\/ S ) ) |
| 29 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) ) |
| 30 |
12 17 20 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> P .<_ ( P .\/ Q ) ) |
| 31 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> C .<_ ( P .\/ Q ) ) |
| 32 |
11 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 33 |
17 32
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> P e. ( Base ` K ) ) |
| 34 |
11 2 3 4 5 9
|
cdleme9b |
|- ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> C e. ( Base ` K ) ) |
| 35 |
12 17 14 25 34
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> C e. ( Base ` K ) ) |
| 36 |
11 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ C e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ Q ) /\ C .<_ ( P .\/ Q ) ) <-> ( P .\/ C ) .<_ ( P .\/ Q ) ) ) |
| 37 |
13 33 35 22 36
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> ( ( P .<_ ( P .\/ Q ) /\ C .<_ ( P .\/ Q ) ) <-> ( P .\/ C ) .<_ ( P .\/ Q ) ) ) |
| 38 |
30 31 37
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> ( P .\/ C ) .<_ ( P .\/ Q ) ) |
| 39 |
28 38
|
eqbrtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> ( P .\/ S ) .<_ ( P .\/ Q ) ) |
| 40 |
11 1 13 16 19 22 24 39
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) /\ C .<_ ( P .\/ Q ) ) -> S .<_ ( P .\/ Q ) ) |
| 41 |
10 40
|
mtand |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> -. C .<_ ( P .\/ Q ) ) |