Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme21.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme21.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme21.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme21.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme21.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme21.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( K e. HL /\ W e. H ) ) |
8 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
9 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> Q e. A ) |
10 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> S e. A ) |
11 |
|
simp231 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> P =/= Q ) |
12 |
|
simp232 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
13 |
|
simp3ll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> z e. A ) |
14 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( P .\/ z ) = ( S .\/ z ) ) |
15 |
1 2 3 4 5 6
|
cdleme21c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. U .<_ ( S .\/ z ) ) |
16 |
7 8 9 10 11 12 13 14 15
|
syl332anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. U .<_ ( S .\/ z ) ) |
17 |
|
simp233 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> U .<_ ( S .\/ T ) ) |
18 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> K e. HL ) |
19 |
|
hlcvl |
|- ( K e. HL -> K e. CvLat ) |
20 |
18 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> K e. CvLat ) |
21 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> W e. H ) |
22 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> P e. A ) |
23 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. P .<_ W ) |
24 |
1 2 3 4 5 6
|
cdleme0a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
25 |
18 21 22 23 9 11 24
|
syl222anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> U e. A ) |
26 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> T e. A ) |
27 |
18
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> K e. Lat ) |
28 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
29 |
28 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
30 |
18 22 9 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
31 |
28 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
32 |
21 31
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> W e. ( Base ` K ) ) |
33 |
28 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
34 |
27 30 32 33
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
35 |
6 34
|
eqbrtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> U .<_ W ) |
36 |
|
simp21r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. S .<_ W ) |
37 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. S .<_ W ) -> U =/= S ) |
38 |
35 36 37
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> U =/= S ) |
39 |
|
simp22r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. T .<_ W ) |
40 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. T .<_ W ) -> U =/= T ) |
41 |
35 39 40
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> U =/= T ) |
42 |
1 2 4
|
cvlatexch3 |
|- ( ( K e. CvLat /\ ( U e. A /\ S e. A /\ T e. A ) /\ ( U =/= S /\ U =/= T ) ) -> ( U .<_ ( S .\/ T ) -> ( U .\/ S ) = ( U .\/ T ) ) ) |
43 |
20 25 10 26 38 41 42
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( U .<_ ( S .\/ T ) -> ( U .\/ S ) = ( U .\/ T ) ) ) |
44 |
17 43
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( U .\/ S ) = ( U .\/ T ) ) |
45 |
44
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) /\ U .<_ ( T .\/ z ) ) -> ( U .\/ S ) = ( U .\/ T ) ) |
46 |
|
simp3lr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. z .<_ W ) |
47 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. z .<_ W ) -> U =/= z ) |
48 |
35 46 47
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> U =/= z ) |
49 |
1 2 4
|
cvlatexch3 |
|- ( ( K e. CvLat /\ ( U e. A /\ T e. A /\ z e. A ) /\ ( U =/= T /\ U =/= z ) ) -> ( U .<_ ( T .\/ z ) -> ( U .\/ T ) = ( U .\/ z ) ) ) |
50 |
20 25 26 13 41 48 49
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( U .<_ ( T .\/ z ) -> ( U .\/ T ) = ( U .\/ z ) ) ) |
51 |
50
|
imp |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) /\ U .<_ ( T .\/ z ) ) -> ( U .\/ T ) = ( U .\/ z ) ) |
52 |
45 51
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) /\ U .<_ ( T .\/ z ) ) -> ( U .\/ S ) = ( U .\/ z ) ) |
53 |
52
|
ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( U .<_ ( T .\/ z ) -> ( U .\/ S ) = ( U .\/ z ) ) ) |
54 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> S .<_ ( U .\/ S ) ) |
55 |
18 25 10 54
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> S .<_ ( U .\/ S ) ) |
56 |
|
breq2 |
|- ( ( U .\/ S ) = ( U .\/ z ) -> ( S .<_ ( U .\/ S ) <-> S .<_ ( U .\/ z ) ) ) |
57 |
55 56
|
syl5ibcom |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( ( U .\/ S ) = ( U .\/ z ) -> S .<_ ( U .\/ z ) ) ) |
58 |
1 2 4
|
cdleme21a |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> S =/= z ) |
59 |
18 22 9 10 12 13 14 58
|
syl322anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> S =/= z ) |
60 |
1 2 4
|
cvlatexch2 |
|- ( ( K e. CvLat /\ ( S e. A /\ U e. A /\ z e. A ) /\ S =/= z ) -> ( S .<_ ( U .\/ z ) -> U .<_ ( S .\/ z ) ) ) |
61 |
20 10 25 13 59 60
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( S .<_ ( U .\/ z ) -> U .<_ ( S .\/ z ) ) ) |
62 |
53 57 61
|
3syld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( U .<_ ( T .\/ z ) -> U .<_ ( S .\/ z ) ) ) |
63 |
16 62
|
mtod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. U .<_ ( T .\/ z ) ) |