Step |
Hyp |
Ref |
Expression |
1 |
|
cntzmhm.z |
|- Z = ( Cntz ` G ) |
2 |
|
cntzmhm.y |
|- Y = ( Cntz ` H ) |
3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
5 |
3 4
|
mhmf |
|- ( F e. ( G MndHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
6 |
3 1
|
cntzssv |
|- ( Z ` S ) C_ ( Base ` G ) |
7 |
6
|
sseli |
|- ( A e. ( Z ` S ) -> A e. ( Base ` G ) ) |
8 |
|
ffvelrn |
|- ( ( F : ( Base ` G ) --> ( Base ` H ) /\ A e. ( Base ` G ) ) -> ( F ` A ) e. ( Base ` H ) ) |
9 |
5 7 8
|
syl2an |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F ` A ) e. ( Base ` H ) ) |
10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
11 |
10 1
|
cntzi |
|- ( ( A e. ( Z ` S ) /\ x e. S ) -> ( A ( +g ` G ) x ) = ( x ( +g ` G ) A ) ) |
12 |
11
|
adantll |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( A ( +g ` G ) x ) = ( x ( +g ` G ) A ) ) |
13 |
12
|
fveq2d |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( A ( +g ` G ) x ) ) = ( F ` ( x ( +g ` G ) A ) ) ) |
14 |
|
simpll |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> F e. ( G MndHom H ) ) |
15 |
7
|
ad2antlr |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> A e. ( Base ` G ) ) |
16 |
3 1
|
cntzrcl |
|- ( A e. ( Z ` S ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) |
17 |
16
|
adantl |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) |
18 |
17
|
simprd |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> S C_ ( Base ` G ) ) |
19 |
18
|
sselda |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> x e. ( Base ` G ) ) |
20 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
21 |
3 10 20
|
mhmlin |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Base ` G ) /\ x e. ( Base ` G ) ) -> ( F ` ( A ( +g ` G ) x ) ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) |
22 |
14 15 19 21
|
syl3anc |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( A ( +g ` G ) x ) ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) |
23 |
3 10 20
|
mhmlin |
|- ( ( F e. ( G MndHom H ) /\ x e. ( Base ` G ) /\ A e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
24 |
14 19 15 23
|
syl3anc |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( x ( +g ` G ) A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
25 |
13 22 24
|
3eqtr3d |
|- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
26 |
25
|
ralrimiva |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
27 |
5
|
adantr |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
28 |
27
|
ffnd |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> F Fn ( Base ` G ) ) |
29 |
|
oveq2 |
|- ( y = ( F ` x ) -> ( ( F ` A ) ( +g ` H ) y ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) |
30 |
|
oveq1 |
|- ( y = ( F ` x ) -> ( y ( +g ` H ) ( F ` A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
31 |
29 30
|
eqeq12d |
|- ( y = ( F ` x ) -> ( ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) |
32 |
31
|
ralima |
|- ( ( F Fn ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) |
33 |
28 18 32
|
syl2anc |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) |
34 |
26 33
|
mpbird |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) |
35 |
|
imassrn |
|- ( F " S ) C_ ran F |
36 |
27
|
frnd |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ran F C_ ( Base ` H ) ) |
37 |
35 36
|
sstrid |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F " S ) C_ ( Base ` H ) ) |
38 |
4 20 2
|
elcntz |
|- ( ( F " S ) C_ ( Base ` H ) -> ( ( F ` A ) e. ( Y ` ( F " S ) ) <-> ( ( F ` A ) e. ( Base ` H ) /\ A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) ) ) |
39 |
37 38
|
syl |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( ( F ` A ) e. ( Y ` ( F " S ) ) <-> ( ( F ` A ) e. ( Base ` H ) /\ A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) ) ) |
40 |
9 34 39
|
mpbir2and |
|- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F ` A ) e. ( Y ` ( F " S ) ) ) |