| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dalem-cly.o |
|- O = ( LPlanes ` K ) |
| 6 |
|
dalem-cly.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
| 7 |
|
dalem-cly.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
| 8 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
| 9 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
| 10 |
1 5
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
| 11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 12 |
11 2 3
|
latleeqj1 |
|- ( ( K e. Lat /\ C e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( C .<_ Y <-> ( C .\/ Y ) = Y ) ) |
| 13 |
8 9 10 12
|
syl3anc |
|- ( ph -> ( C .<_ Y <-> ( C .\/ Y ) = Y ) ) |
| 14 |
1
|
dalemclpjs |
|- ( ph -> C .<_ ( P .\/ S ) ) |
| 15 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
| 16 |
1 2 3 4 5 6
|
dalemcea |
|- ( ph -> C e. A ) |
| 17 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
| 18 |
1
|
dalempea |
|- ( ph -> P e. A ) |
| 19 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
| 20 |
1
|
dalem-clpjq |
|- ( ph -> -. C .<_ ( P .\/ Q ) ) |
| 21 |
2 3 4
|
atnlej1 |
|- ( ( K e. HL /\ ( C e. A /\ P e. A /\ Q e. A ) /\ -. C .<_ ( P .\/ Q ) ) -> C =/= P ) |
| 22 |
15 16 18 19 20 21
|
syl131anc |
|- ( ph -> C =/= P ) |
| 23 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( C e. A /\ S e. A /\ P e. A ) /\ C =/= P ) -> ( C .<_ ( P .\/ S ) -> S .<_ ( P .\/ C ) ) ) |
| 24 |
15 16 17 18 22 23
|
syl131anc |
|- ( ph -> ( C .<_ ( P .\/ S ) -> S .<_ ( P .\/ C ) ) ) |
| 25 |
14 24
|
mpd |
|- ( ph -> S .<_ ( P .\/ C ) ) |
| 26 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ C e. A /\ P e. A ) -> ( C .\/ P ) = ( P .\/ C ) ) |
| 27 |
15 16 18 26
|
syl3anc |
|- ( ph -> ( C .\/ P ) = ( P .\/ C ) ) |
| 28 |
25 27
|
breqtrrd |
|- ( ph -> S .<_ ( C .\/ P ) ) |
| 29 |
1
|
dalemclqjt |
|- ( ph -> C .<_ ( Q .\/ T ) ) |
| 30 |
1
|
dalemtea |
|- ( ph -> T e. A ) |
| 31 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
| 32 |
|
simp312 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( Q .\/ R ) ) |
| 33 |
1 32
|
sylbi |
|- ( ph -> -. C .<_ ( Q .\/ R ) ) |
| 34 |
2 3 4
|
atnlej1 |
|- ( ( K e. HL /\ ( C e. A /\ Q e. A /\ R e. A ) /\ -. C .<_ ( Q .\/ R ) ) -> C =/= Q ) |
| 35 |
15 16 19 31 33 34
|
syl131anc |
|- ( ph -> C =/= Q ) |
| 36 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( C e. A /\ T e. A /\ Q e. A ) /\ C =/= Q ) -> ( C .<_ ( Q .\/ T ) -> T .<_ ( Q .\/ C ) ) ) |
| 37 |
15 16 30 19 35 36
|
syl131anc |
|- ( ph -> ( C .<_ ( Q .\/ T ) -> T .<_ ( Q .\/ C ) ) ) |
| 38 |
29 37
|
mpd |
|- ( ph -> T .<_ ( Q .\/ C ) ) |
| 39 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ C e. A /\ Q e. A ) -> ( C .\/ Q ) = ( Q .\/ C ) ) |
| 40 |
15 16 19 39
|
syl3anc |
|- ( ph -> ( C .\/ Q ) = ( Q .\/ C ) ) |
| 41 |
38 40
|
breqtrrd |
|- ( ph -> T .<_ ( C .\/ Q ) ) |
| 42 |
1 4
|
dalemseb |
|- ( ph -> S e. ( Base ` K ) ) |
| 43 |
11 3 4
|
hlatjcl |
|- ( ( K e. HL /\ C e. A /\ P e. A ) -> ( C .\/ P ) e. ( Base ` K ) ) |
| 44 |
15 16 18 43
|
syl3anc |
|- ( ph -> ( C .\/ P ) e. ( Base ` K ) ) |
| 45 |
1 4
|
dalemteb |
|- ( ph -> T e. ( Base ` K ) ) |
| 46 |
11 3 4
|
hlatjcl |
|- ( ( K e. HL /\ C e. A /\ Q e. A ) -> ( C .\/ Q ) e. ( Base ` K ) ) |
| 47 |
15 16 19 46
|
syl3anc |
|- ( ph -> ( C .\/ Q ) e. ( Base ` K ) ) |
| 48 |
11 2 3
|
latjlej12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( C .\/ P ) e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ ( C .\/ Q ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( C .\/ P ) /\ T .<_ ( C .\/ Q ) ) -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) ) |
| 49 |
8 42 44 45 47 48
|
syl122anc |
|- ( ph -> ( ( S .<_ ( C .\/ P ) /\ T .<_ ( C .\/ Q ) ) -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) ) |
| 50 |
28 41 49
|
mp2and |
|- ( ph -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) |
| 51 |
1 4
|
dalempeb |
|- ( ph -> P e. ( Base ` K ) ) |
| 52 |
1 4
|
dalemqeb |
|- ( ph -> Q e. ( Base ` K ) ) |
| 53 |
11 3
|
latjjdi |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( C .\/ ( P .\/ Q ) ) = ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) |
| 54 |
8 9 51 52 53
|
syl13anc |
|- ( ph -> ( C .\/ ( P .\/ Q ) ) = ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) |
| 55 |
50 54
|
breqtrrd |
|- ( ph -> ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) ) |
| 56 |
1
|
dalemclrju |
|- ( ph -> C .<_ ( R .\/ U ) ) |
| 57 |
1
|
dalemuea |
|- ( ph -> U e. A ) |
| 58 |
|
simp313 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( R .\/ P ) ) |
| 59 |
1 58
|
sylbi |
|- ( ph -> -. C .<_ ( R .\/ P ) ) |
| 60 |
2 3 4
|
atnlej1 |
|- ( ( K e. HL /\ ( C e. A /\ R e. A /\ P e. A ) /\ -. C .<_ ( R .\/ P ) ) -> C =/= R ) |
| 61 |
15 16 31 18 59 60
|
syl131anc |
|- ( ph -> C =/= R ) |
| 62 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( C e. A /\ U e. A /\ R e. A ) /\ C =/= R ) -> ( C .<_ ( R .\/ U ) -> U .<_ ( R .\/ C ) ) ) |
| 63 |
15 16 57 31 61 62
|
syl131anc |
|- ( ph -> ( C .<_ ( R .\/ U ) -> U .<_ ( R .\/ C ) ) ) |
| 64 |
56 63
|
mpd |
|- ( ph -> U .<_ ( R .\/ C ) ) |
| 65 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ C e. A /\ R e. A ) -> ( C .\/ R ) = ( R .\/ C ) ) |
| 66 |
15 16 31 65
|
syl3anc |
|- ( ph -> ( C .\/ R ) = ( R .\/ C ) ) |
| 67 |
64 66
|
breqtrrd |
|- ( ph -> U .<_ ( C .\/ R ) ) |
| 68 |
1 3 4
|
dalemsjteb |
|- ( ph -> ( S .\/ T ) e. ( Base ` K ) ) |
| 69 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 70 |
11 3
|
latjcl |
|- ( ( K e. Lat /\ C e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
| 71 |
8 9 69 70
|
syl3anc |
|- ( ph -> ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
| 72 |
1 4
|
dalemueb |
|- ( ph -> U e. ( Base ` K ) ) |
| 73 |
11 3 4
|
hlatjcl |
|- ( ( K e. HL /\ C e. A /\ R e. A ) -> ( C .\/ R ) e. ( Base ` K ) ) |
| 74 |
15 16 31 73
|
syl3anc |
|- ( ph -> ( C .\/ R ) e. ( Base ` K ) ) |
| 75 |
11 2 3
|
latjlej12 |
|- ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) /\ ( U e. ( Base ` K ) /\ ( C .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) /\ U .<_ ( C .\/ R ) ) -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) ) |
| 76 |
8 68 71 72 74 75
|
syl122anc |
|- ( ph -> ( ( ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) /\ U .<_ ( C .\/ R ) ) -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) ) |
| 77 |
55 67 76
|
mp2and |
|- ( ph -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) |
| 78 |
1 4
|
dalemreb |
|- ( ph -> R e. ( Base ` K ) ) |
| 79 |
11 3
|
latjjdi |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( C .\/ ( ( P .\/ Q ) .\/ R ) ) = ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) |
| 80 |
8 9 69 78 79
|
syl13anc |
|- ( ph -> ( C .\/ ( ( P .\/ Q ) .\/ R ) ) = ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) |
| 81 |
77 80
|
breqtrrd |
|- ( ph -> ( ( S .\/ T ) .\/ U ) .<_ ( C .\/ ( ( P .\/ Q ) .\/ R ) ) ) |
| 82 |
6
|
oveq2i |
|- ( C .\/ Y ) = ( C .\/ ( ( P .\/ Q ) .\/ R ) ) |
| 83 |
81 7 82
|
3brtr4g |
|- ( ph -> Z .<_ ( C .\/ Y ) ) |
| 84 |
|
breq2 |
|- ( ( C .\/ Y ) = Y -> ( Z .<_ ( C .\/ Y ) <-> Z .<_ Y ) ) |
| 85 |
83 84
|
syl5ibcom |
|- ( ph -> ( ( C .\/ Y ) = Y -> Z .<_ Y ) ) |
| 86 |
13 85
|
sylbid |
|- ( ph -> ( C .<_ Y -> Z .<_ Y ) ) |
| 87 |
1
|
dalemzeo |
|- ( ph -> Z e. O ) |
| 88 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
| 89 |
2 5
|
lplncmp |
|- ( ( K e. HL /\ Z e. O /\ Y e. O ) -> ( Z .<_ Y <-> Z = Y ) ) |
| 90 |
15 87 88 89
|
syl3anc |
|- ( ph -> ( Z .<_ Y <-> Z = Y ) ) |
| 91 |
|
eqcom |
|- ( Z = Y <-> Y = Z ) |
| 92 |
90 91
|
bitrdi |
|- ( ph -> ( Z .<_ Y <-> Y = Z ) ) |
| 93 |
86 92
|
sylibd |
|- ( ph -> ( C .<_ Y -> Y = Z ) ) |
| 94 |
93
|
necon3ad |
|- ( ph -> ( Y =/= Z -> -. C .<_ Y ) ) |
| 95 |
94
|
imp |
|- ( ( ph /\ Y =/= Z ) -> -. C .<_ Y ) |